- 相關(guān)推薦
初中數(shù)學(xué)公式定理集錦之函數(shù)與圖像解析
1數(shù)軸
11 有向直線
在科學(xué)技術(shù)和日常生活中,為了區(qū)別一條直線的兩個不同方向,可以規(guī)定其中一方向為正向,另一方向為負相
規(guī)定了正方向的直線,叫做有向直線,讀作有向直線l
12 數(shù)軸
我們把數(shù)軸上任意一點所對應(yīng)的實數(shù)稱為點的坐標(biāo)
對于每一個坐標(biāo)(實數(shù)),在數(shù)周上可以找到唯一的點與之對應(yīng)這就是直線的坐標(biāo)化
數(shù)軸上任意一條有向線段的數(shù)量等于它的終點坐標(biāo)與起點坐標(biāo)的差任意一條有向線段的長度等于它兩個斷電坐標(biāo)差的絕對值
2 平面直角坐標(biāo)系
21 平面的直角坐標(biāo)化
在平面內(nèi)任取一點o為作為原點(基準(zhǔn)點),過o引兩條互相垂直的,以o為公共原點的數(shù)軸,一般地,兩個數(shù)軸選取相同的單位長度這樣就構(gòu)成了一個平面直角坐標(biāo)系x軸叫橫軸,y軸叫縱軸,它們都叫直角坐標(biāo)系的坐標(biāo)軸;公共原點o稱為直角坐標(biāo)系的原點;我們把建立了直角坐標(biāo)系的平面叫直角坐標(biāo)平面簡稱坐標(biāo)平面兩坐標(biāo)軸把坐標(biāo)平面分成四個部分,它們叫做四個象限
22 兩點間的距離
23 中點公式
3 函數(shù)
31 常量,變量和函數(shù)
在某一過程中可以去不同數(shù)值的量,叫做變量在整個過程中保持統(tǒng)一數(shù)值的量或數(shù),叫做常量或常數(shù)
一般地,設(shè)在變活過程中有兩個互相關(guān)聯(lián)的變量x,y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一確定的值與之對應(yīng),那么就稱y是x的函數(shù),x叫做自變量
1. 函數(shù)的定義域
2. 對應(yīng)法則
(1) 解析法
就是用等式來表示一個變量是另一個變量的函數(shù),這個等式叫做函數(shù)的解析表達式(函數(shù)關(guān)系式)
(2) 列表法
(3) 圖像法
3 函數(shù)的值域
一般的,當(dāng)函數(shù)f(x)的自變量x去定義域D中的一個確定的值a,函數(shù)有唯一確定的對應(yīng)值這個對應(yīng)值,稱為x=a時的函數(shù)值,簡稱函數(shù)值,記作:f(a)
32 函數(shù)的圖像
若把自變量x的一個值和函數(shù)y的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),可以在直角坐標(biāo)平面上描出一個點(x,f(x))的集合構(gòu)成一個圖形F,而集F成為函數(shù)y=f(x)的圖像
知道函數(shù)的解析式,要畫函數(shù)的圖像,一般分為列表,描點,連線三個步驟
4 正比例函數(shù)
41 正比例函數(shù)
一般地,函數(shù)y=kx(k是不等于零的常數(shù))叫做正比例函數(shù),其中常數(shù)k叫做變量y與x之間的比例函數(shù)確定了比例函數(shù)k,就可以確定一個正比例函數(shù)
正比例函數(shù)y=kx有下列性質(zhì):
(3) 當(dāng)k>0時,它的圖像經(jīng)過第一,三象限,y隨著x的值增大而增大;當(dāng)k<0時,他的圖像經(jīng)過第二,四象限,y隨著x的增大而減小
(2)隨著比例函數(shù)的絕對值的增加,函數(shù)圖像漸漸離開x軸而接近于y軸,因此,比例系數(shù)k和直線y=kx與x軸正方向所成的角有關(guān)據(jù)此,k叫做直線y=kx的斜率
42 反比例函數(shù)
一般地,函數(shù)y=k/x(k是不等于0的常數(shù))叫做反比例函數(shù)
反比例函數(shù)y=k/x有下列性質(zhì):
(7) 當(dāng)k>0時,他的圖像的兩個分支分別位于第一,三象限內(nèi),在每一個象限內(nèi),y隨x的值增大而減小;當(dāng)k<0時,它的圖像的兩個分支分別位于第二、四象限內(nèi),在每一個象限內(nèi),y隨x的增大而增大
(8) 它的圖像的兩個分支都無限接近但永遠不能達到x軸和y軸
5 一次函數(shù)及其圖像
51 一次函數(shù)及其圖像
如果k=0時,函數(shù)變形為y=b,無論x在其定義域內(nèi)取何值,y都有唯一確定的值b與之對應(yīng),這樣的函數(shù)我們稱它為常函數(shù)
直線y=kx+b與y軸交與點(0,b),b叫做直線y=kx+b在y軸上的截距,簡稱縱截距
52 一次函數(shù)的性質(zhì)
函數(shù)y=f(小),在a〈x〈b上,如果函數(shù)值隨著自變量x的值增加而增加,那么我們說函數(shù)f(x)在a〈x
如果分別畫出兩個二元一次方程所對應(yīng)的一次函數(shù)圖像,交點的坐標(biāo)就是這個方程組的解,這種求二元一次方程組的解法叫圖像法
初中數(shù)學(xué)正方形定理公式
關(guān)于正方形定理公式的內(nèi)容精講知識,希望同學(xué)們很好的掌握下面的內(nèi)容。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
、谡叫蔚乃膫角都是直角;
③正方形的兩條對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會取得很好的成績的哦。
初中數(shù)學(xué)平行四邊形定理公式
同學(xué)們認真學(xué)習(xí),下面是老師對數(shù)學(xué)中平行四邊形定理公式的內(nèi)容講解。
平行四邊形
平行四邊形的性質(zhì):
、倨叫兴倪呅蔚膶呄嗟;
、谄叫兴倪呅蔚膶窍嗟龋
、燮叫兴倪呅蔚膶蔷互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
、趦山M對邊分別相等的四邊形是平行四邊形;
、蹖蔷互相平分的四邊形是平行四邊形;
、芤唤M對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學(xué)中平行四邊形定理公式知識的講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,相信同學(xué)們會從中學(xué)習(xí)的更好的哦。
初中數(shù)學(xué)直角三角形定理公式
下面是對直角三角形定理公式的內(nèi)容講解,希望給同學(xué)們的學(xué)習(xí)很好的幫助。
直角三角形的性質(zhì):
①直角三角形的兩個銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
、壑苯侨切蔚膬芍苯沁叺钠椒胶偷扔谛边叺钠椒剑ü垂啥ɡ恚;
、苤苯侨切沃30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
①有兩個角互余的三角形是直角三角形;
、谌绻切蔚娜呴La、b 、c有下面關(guān)系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學(xué)直角三角形定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)等腰三角形的性質(zhì)定理公式
下面是對等腰三角形的性質(zhì)定理公式的內(nèi)容學(xué)習(xí),希望同學(xué)們認真看看。
等腰三角形的性質(zhì):
①等腰三角形的兩個底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學(xué)習(xí),同學(xué)們都能很好的掌握了吧,希望同學(xué)們在考試中取得很好的成績。
初中數(shù)學(xué)三角形定理公式
對于三角形定理公式的學(xué)習(xí),我們做下面的內(nèi)容講解學(xué)習(xí)哦。
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(內(nèi)心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
以上對三角形定理公式的內(nèi)容講解學(xué)習(xí),希望同學(xué)們都能很好的掌握,并在考試中取得很好的成績哦。
【初中數(shù)學(xué)公式定理之函數(shù)與圖像解析】相關(guān)文章:
精選初中數(shù)學(xué)公式定理之公式分類06-28
初中數(shù)學(xué)公式定理總結(jié)07-03
初中數(shù)學(xué)公式定理大全10-09
初中數(shù)學(xué)公式與定理的學(xué)習(xí)方法06-28
關(guān)于初中數(shù)學(xué)公式數(shù)學(xué)定理大全06-28
數(shù)學(xué)公式定義定理06-27
初中數(shù)學(xué)公式表之常用數(shù)學(xué)公式06-28
初中數(shù)學(xué)余切函數(shù)基礎(chǔ)公式定理06-28