- 相關(guān)推薦
等差數(shù)列知識(shí)點(diǎn)總結(jié)
漫長(zhǎng)的學(xué)習(xí)生涯中,不管我們學(xué)什么,都需要掌握一些知識(shí)點(diǎn),知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。掌握知識(shí)點(diǎn)有助于大家更好的學(xué)習(xí)。以下是小編為大家收集的等差數(shù)列知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
一、等差數(shù)列的有關(guān)概念
1.定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列.符號(hào)表示為an+1-an=d(n∈N*,d為常數(shù)).
2.等差中項(xiàng):數(shù)列a,A,b成等差數(shù)列的充要條件是A=(a+b)/2,其中A叫做a,b的等差中項(xiàng).
二、等差數(shù)列的有關(guān)公式
1.通項(xiàng)公式:an=a1+(n-1)d.
2.前n項(xiàng)和公式:Sn=na1+n(n-1)/2d+d=(a1+an)n/2.
三、等差數(shù)列的性質(zhì)
1.若,n,p,q∈N*,且+n=p+q,{an}為等差數(shù)列,則a+an=ap+aq.
2.在等差數(shù)列{an}中,a,a2,a3,a4,…仍為等差數(shù)列,公差為d.
3.若{an}為等差數(shù)列,則Sn,S2n-Sn,S3n-S2n,…仍為等差數(shù)列,公差為n2d.
4.等差數(shù)列的增減性:d>0時(shí)為遞增數(shù)列,且當(dāng)a1<0時(shí)前n項(xiàng)和Sn有最小值.d<0時(shí)為遞減數(shù)列,且當(dāng)a1>0時(shí)前n項(xiàng)和Sn有最大值.
5.等差數(shù)列{an}的首項(xiàng)是a1,公差為d.若其前n項(xiàng)之和可以寫(xiě)成Sn=An2+Bn,則A=d/2,B=a1-d/2,當(dāng)d≠0時(shí)它表示二次函數(shù),數(shù)列{an}的前n項(xiàng)和Sn=An2+Bn是{an}成等差數(shù)列的充要條件.
四、解題方法
1.與前n項(xiàng)和有關(guān)的三類問(wèn)題
(1)知三求二:已知a1、d、n、an、Sn中的任意三個(gè),即可求得其余兩個(gè),這體現(xiàn)了方程思想.
(2)Sn=d/2*n2+(a1-d/2)n=An2+Bnd=2A.
(3)利用二次函數(shù)的圖象確定Sn的最值時(shí),最高點(diǎn)的縱坐標(biāo)不一定是最大值,最低點(diǎn)的縱坐標(biāo)不一定是最小值.
2.設(shè)元與解題的技巧
已知三個(gè)或四個(gè)數(shù)組成等差數(shù)列的一類問(wèn)題,要善于設(shè)元,若奇數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-2d,a-d,a,a+d,a+2d,…;
若偶數(shù)個(gè)數(shù)成等差數(shù)列且和為定值時(shí),可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項(xiàng)再依據(jù)等差數(shù)列的定義進(jìn)行對(duì)稱設(shè)元.
高中數(shù)學(xué)知識(shí)點(diǎn)等差數(shù)列的定義及性質(zhì)
一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做公差,用符號(hào)語(yǔ)言表示為an+1-an=d。
等差數(shù)列的性質(zhì):
。1)若公差d>0,則為遞增等差數(shù)列;若公差d<0,則為遞減等差數(shù)列;若公差d=0,則為常數(shù)列;
。2)有窮等差數(shù)列中,與首末兩端“等距離”的兩項(xiàng)和相等,并且等于首末兩項(xiàng)之和;
。3)m,n∈N*,則am=an+(m-n)d;
。4)若s,t,p,q∈N*,且s+t=p+q,則as+at=ap+aq,其中as,at,ap,aq是數(shù)列中的項(xiàng),特別地,當(dāng)s+t=2p時(shí),高一,有as+at=2ap;
。5)若數(shù)列{an},{bn}均是等差數(shù)列,則數(shù)列{man+kbn}仍為等差數(shù)列,其中m,k均為常數(shù)。
。6)從第二項(xiàng)開(kāi)始起,每一項(xiàng)是與它相鄰兩項(xiàng)的等差中項(xiàng),也是與它等距離的前后兩項(xiàng)的等差中項(xiàng),即
對(duì)等差數(shù)列定義的理解:
、偃绻粋(gè)數(shù)列不是從第2項(xiàng)起,而是從第3項(xiàng)或某一項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差是同一個(gè)常數(shù),那么此數(shù)列不是等差數(shù)列,但可以說(shuō)從第2項(xiàng)或某項(xiàng)開(kāi)始是等差數(shù)列.
②求公差d時(shí),因?yàn)閐是這個(gè)數(shù)列的后一項(xiàng)與前一項(xiàng)的差,故有 還有
、酃頳∈R,當(dāng)d=0時(shí),數(shù)列為常數(shù)列(也是等差數(shù)列);當(dāng)d>0時(shí),數(shù)列為遞增數(shù)列;當(dāng)d<0時(shí),數(shù)列為遞減數(shù)列;
、 是證明或判斷一個(gè)數(shù)列是否為等差數(shù)列的依據(jù);
、葑C明一個(gè)數(shù)列是等差數(shù)列,只需證明an+1-an是一個(gè)與n無(wú)關(guān)的常數(shù)即可。
等差數(shù)列求解與證明的基本方法:
(1)學(xué)會(huì)運(yùn)用函數(shù)與方程思想解題;
(2)抓住首項(xiàng)與公差是解決等差數(shù)列問(wèn)題的關(guān)鍵;
(3)等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式涉及五個(gè)量:a1,d,n,an,Sn,知道其中任意三個(gè)就可以列方程組求出另外兩個(gè)(俗稱“知三求二’).
等差數(shù)列公式
等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d
或an=am+(n-m)d
前n項(xiàng)和公式為:Sn=na1+[n(n-1)/2] d或sn=(a1+an)n/2
若m+n=2p則:am+an=2ap
以上n均為正整數(shù)
文字翻譯
第n項(xiàng)的值=首項(xiàng)+(項(xiàng)數(shù)-1)*公差
前n項(xiàng)的和=(首項(xiàng)+末項(xiàng))*項(xiàng)數(shù)/2
公差=后項(xiàng)-前項(xiàng)
等比數(shù)列公式
等比數(shù)列求和公式
(1) 等比數(shù)列:a (n+1)/an=q (n∈N)。
(2) 通項(xiàng)公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m);
(3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項(xiàng)數(shù))
(4)性質(zhì):
①若 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq;
②在等比數(shù)列中,依次每 k項(xiàng)之和仍成等比數(shù)列.
、廴鬽、n、q∈N,且m+n=2q,則am×an=aq^2
(5)"G是a、b的等比中項(xiàng)""G^2=ab(G ≠ 0)".
(6)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項(xiàng)。
等比數(shù)列求和公式推導(dǎo): Sn=a1+a2+a3+...+an(公比為q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)。
【等差數(shù)列知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
過(guò)秦論知識(shí)點(diǎn)總結(jié)06-29
語(yǔ)文知識(shí)點(diǎn)總結(jié)08-26