97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

高二數(shù)學(xué)平面向量知識點(diǎn)總結(jié)

時(shí)間:2022-06-22 23:35:30 總結(jié)范文 我要投稿
  • 相關(guān)推薦

高二數(shù)學(xué)平面向量知識點(diǎn)總結(jié)

  平面向量

高二數(shù)學(xué)平面向量知識點(diǎn)總結(jié)

  1.基本概念:

  向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。

  2. 加法與減法的代數(shù)運(yùn)算:

  (1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

  向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

  向量加法有如下規(guī)律: + = + (交換律); +( +c)=( + )+c (結(jié)合律);

  3.實(shí)數(shù)與向量的積:實(shí)數(shù) 與向量 的積是一個(gè)向量。

  (1)| |=| |

  (2) 當(dāng) a0時(shí), 與a的方向相同;當(dāng)a0時(shí), 與a的方向相反;當(dāng) a=0時(shí),a=0.

  兩個(gè)向量共線的充要條件:

  (1) 向量b與非零向量 共線的充要條件是有且僅有一個(gè)實(shí)數(shù) ,使得b= .

  (2) 若 =( ),b=( )則 ‖b .

  平面向量基本定理:

  若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任一向量 ,有且只有一對實(shí)數(shù) , ,使得 = e1+ e2.

  4.P分有向線段 所成的比:

  設(shè)P1、P2是直線 上兩個(gè)點(diǎn),點(diǎn)P是 上不同于P1、P2的任意一點(diǎn),則存在一個(gè)實(shí)數(shù) 使 = , 叫做點(diǎn)P分有向線段 所成的比。

  當(dāng)點(diǎn)P在線段 上時(shí), 當(dāng)點(diǎn)P在線段 或 的延長線上時(shí),

  分點(diǎn)坐標(biāo)公式:若 = ; 的坐標(biāo)分別為( ),( ),( );則 ( -1), 中點(diǎn)坐標(biāo)公式: .

  5. 向量的數(shù)量積:

  (1).向量的夾角:

  已知兩個(gè)非零向量 與b,作 = , =b,則AOB= ( )叫做向量 與b的夾角。

  (2).兩個(gè)向量的數(shù)量積:

  已知兩個(gè)非零向量 與b,它們的夾角為 ,則 b=| ||b|cos .

  其中|b|cos 稱為向量b在 方向上的投影.

  (3).向量的數(shù)量積的性質(zhì):

  若 =( ),b=( )則e = e=| |cos (e為單位向量);

  b b=0 ( ,b為非零向量);| |= ;

  cos = = .

  (4) .向量的數(shù)量積的運(yùn)算律:

  b=b( )b= ( b)= ( b);( +b)c= c+bc.

  6.主要思想與方法:

  本章主要樹立數(shù)形轉(zhuǎn)化和結(jié)合的觀點(diǎn),以數(shù)代形,以形觀數(shù),用代數(shù)的運(yùn)算處理幾何問題,特別是處理向量的相關(guān)位置關(guān)系,正確運(yùn)用共線向量和平面向量的基本定理,計(jì)算向量的模、兩點(diǎn)的距離、向量的夾角,判斷兩向量是否垂直等。由于向量是一新的工具,它往往會(huì)與三角函數(shù)、數(shù)列、不等式、解幾等結(jié)合起來進(jìn)行綜合考查,是知識的交匯點(diǎn)。