- 相關(guān)推薦
初中數(shù)學(xué)知識點總結(jié)歸納4點
知識點總結(jié)
一、相交線:
性質(zhì):兩條直線相交,有且只有一個交點。
二、對頂角、鄰補角:
1.對頂角:如圖,直線AB和CD相交于點O,∠1與∠2有公共頂點O,它們的兩邊互為反向延長線,這樣的兩個角叫做對頂角。
說明:兩個角是對頂角必需滿足兩個條件:(1)有公共頂點;(2)兩邊互為反向延長線。
2.鄰補角:如圖,∠1和∠2有一條公共邊OC,它們的另一條邊OA、OB互為反向延長線,顯然它們互補。具有這種關(guān)系的兩個角叫做互為鄰補角。
3.性質(zhì):(1)對頂角相等;(2)互為鄰補角的兩個角的和等于。
三、有關(guān)垂線的概念和性質(zhì):
1.概念:如果兩條直線相交所成的四個角中,有一角是直角,就說這兩條直線互相垂直,其中的一條叫做另一條直線的垂線,它們的交點叫做垂足。
說明:垂直是相交的一種特殊情況。
2.點到直線的距離:直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
說明:垂線是直線,而垂線段是一條線段,點到直線的距離不是指垂線段,而是指垂線段的長度。
3.平行線間的距離:同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做這兩條平行線間的距離。平行線間的距離處處相等。
4.性質(zhì):(1)互相垂直的兩條直線相交所成的四個角都是直角;(2)過直線上一點或直線外一點畫已知直線的垂線,并且只能畫出一條垂線;(3)連結(jié)直線外一點與直線上各點的所有線段中,垂線段最短。簡單地說:垂線段最短;(4)平行線間的距離處處相等。
四、同位角、內(nèi)錯角、同旁內(nèi)角:
如圖,直線AB、CD被第三條直線EF所截,構(gòu)成八個角,簡稱“三線八角”。
1.同位角:∠1與∠5,∠2與∠6,∠3與∠7,∠4與∠8,它們分別在AB、CD同側(cè),且在EF同側(cè)。同位角呈“F”形;
2.內(nèi)錯角:∠3與∠5,∠4與∠6,它們分夾在AB、CD之間,同時又各在EF兩側(cè)。內(nèi)錯角呈“Z”形;
3.同旁內(nèi)角:∠4與∠5,∠3與∠6,它們分別夾在AB、CD之間,同時又在EF同側(cè)。同旁內(nèi)角呈“U”形。
說明:(1)同位角、內(nèi)錯角、同旁內(nèi)角是指具有特殊位置關(guān)系的兩個角;
。2)這三類角都是由兩條直線被第三條直線所截形成的;
。3)同位角特征:截線同旁,被截兩線的同方向;內(nèi)錯角特征:截線兩旁,被截兩線段之間;同旁內(nèi)角特征:截線同旁,被截兩線段之間;
。4)兩條直線被第三條直線所截成的八個角中,同位角4對,內(nèi)錯角2對,同旁內(nèi)角2對。
常見考法
。1)對頂角、鄰補角、同位角、內(nèi)錯角和同旁內(nèi)角,在中考中必有所涉及,一般是綜合其它知識一起考查;
。2)垂線段最短的性質(zhì)在生活中有廣泛應(yīng)用 ,在中考中一般以填空、作圖出現(xiàn),主是根據(jù)要求作出垂線段或用性質(zhì)解釋理由。
誤區(qū)提醒
。1)對頂角、鄰補角以及垂線的概念理解有誤;
(2)在復(fù)雜圖形中辨認同位角、內(nèi)錯角、同旁內(nèi)角時產(chǎn)生遺漏或錯認。
【典型例題】如圖,∠BAC=90°,AD⊥BC,則下面的結(jié)論中,正確的個數(shù)是( )個。
、冱cB到AC的垂線段是線段AB;
、诰段AC是點C到AB的垂線段;
、劬段AD是點D到BC的垂線段;
、芫段BD是點B到AD的垂線段.
A.1 B.2 C.3 D.4
【解析】③是錯誤的,其余的均是正確的,故本題選C
【初中數(shù)學(xué)知識點總結(jié)歸納4點】相關(guān)文章:
初中數(shù)學(xué)知識點歸納總結(jié)06-28
初中數(shù)學(xué)旋轉(zhuǎn)的知識點歸納總結(jié)06-28
初中數(shù)學(xué)軸對稱知識點的歸納總結(jié)06-28
有關(guān)初中數(shù)學(xué)圓的知識點總結(jié)歸納08-04
數(shù)學(xué)歸納法初中數(shù)學(xué)知識點總結(jié)06-28
關(guān)于初中數(shù)學(xué)知識點歸納總結(jié)口訣06-27
初中數(shù)學(xué)知識點總結(jié)歸納之梯形06-27