- 相關(guān)推薦
初中數(shù)學(xué)重要知識點(diǎn)總結(jié):特殊的平行四邊形
一、特殊的平行四邊形
1.矩形:
(1)定義:有一個角是直角的平行四邊形。
(2)性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。
(3)判定定理:
、儆幸粋角是直角的平行四邊形叫做矩形。 ②對角線相等的平行四邊形是矩形。 ③有三個角是直角的四邊形是矩形。
直角三角形的性質(zhì):直角三角形中所對的直角邊等于斜邊的一半。
2.菱形:
。1)定義 :鄰邊相等的平行四邊形。
。2)性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
。3)判定定理:
、僖唤M鄰邊相等的平行四邊形是菱形。
、趯蔷互相垂直的平行四邊形是菱形。
、鬯臈l邊相等的四邊形是菱形。
。4)面積:
3.正方形:
。1)定義:一個角是直角的菱形或鄰邊相等的矩形。
(2)性質(zhì):四條邊都相等,四個角都是直角,對角線互相垂直平分。 正方形既是矩形,又是菱形。
。3)正方形判定定理:
、賹蔷互相垂直平分且相等的四邊形是正方形;
、谝唤M鄰邊相等,一個角為直角的平行四邊形是正方形;
、蹖蔷互相垂直的矩形是正方形;
、茑忂呄嗟鹊木匦问钦叫
、萦幸粋角是直角的菱形是正方形;
、迣蔷相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴(kuò)充來的。矩形是由平行四邊形增加“一個角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個角為90°”兩個條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的特性。
2.矩形、菱形的判定可以根據(jù)出發(fā)點(diǎn)不同而分成兩類:一類是以四邊形為出發(fā)點(diǎn)進(jìn)行判定,另一類是以平行四邊形為出發(fā)點(diǎn)進(jìn)行判定。而正方形除了上述兩個出發(fā)點(diǎn)外,還可以從矩形和菱形出發(fā)進(jìn)行判定。
三、判定一個四邊形是特殊四邊形的步驟:
常見考法
。1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計算;
。2)靈活運(yùn)用判定定理證明一個四邊形(或平行四邊形)是菱形、矩形、正方形;
。3)一些折疊問題;
。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。
誤區(qū)提醒
(1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現(xiàn)混淆;
(2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現(xiàn)混淆;
。3)不能正確的理解和運(yùn)用判定定理進(jìn)行證明,(如在證明菱形時,把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);(3)再利用對角線長度求菱形的面積時,忘記乘;(3)判定一個四邊形是特殊的平行四邊形的條件不充分。
【典型例題】(2010天門、潛江、仙桃)正方形ABCD中,點(diǎn)O是對角線DB的中點(diǎn),點(diǎn)P是DB所在直線上的一個動點(diǎn),PE⊥BC于E,PF⊥DC于F.
(1)當(dāng)點(diǎn)P與點(diǎn)O重合時(如圖①),猜測AP與EF的數(shù)量及位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)點(diǎn)P在線段DB上 (不與點(diǎn)D、O、B重合)時(如圖②),探究(1)中的結(jié)論是否成立?若成立,寫出證明過程;若不成立,請說明理由;
(3)當(dāng)點(diǎn)P在DB的長延長線上時,請將圖③補(bǔ)充完整,并判斷(1)中的結(jié)論是否成立?若成立,直接寫出結(jié)論;若不成立,請寫出相應(yīng)的結(jié)論.
【解析】(1)AP=EF,AP⊥EF,理由如下:
連接AC,則AC必過點(diǎn)O,延長FO交AB于M;
∵OF⊥CD,OE⊥BC,且四邊形ABCD是正方形,
∴四邊形OECF是正方形,
∴OM=OF=OE=AM,
∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,
∴△AMO≌△FOE,
∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,
故AP=EF,且AP⊥EF.
。2)題(1)的結(jié)論仍然成立,理由如下:
延長AP交BC于N,延長FP交AB于M;
∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,
∴四邊形MBEP是正方形,
∴MP=PE,∠AMP=∠FPE=90°;
又∵AB-BM=AM,BC-BE=EC=PF,且AB=BC,BM=BE,
∴AM=PF,
∴△AMP≌△FPE,
∴AP=EF,∠APM=∠FPN=∠PEF
∵∠PEF+∠PFE=90°,∠FPN=∠PEF,
∴∠FPN+∠PFE=90°,即AP⊥EF,
故AP=EF,且AP⊥EF.
(3)題(1)(2)的結(jié)論仍然成立;
如右圖,延長AB交PF于H,證法與(2)完全相同
【初中數(shù)學(xué)重要知識點(diǎn)總結(jié):特殊的平行四邊形】相關(guān)文章:
初中數(shù)學(xué)重要知識點(diǎn)的總結(jié)06-27
初中數(shù)學(xué)圓的定義重要知識點(diǎn)總結(jié)06-28
初中數(shù)學(xué)軸對稱畫法的重要知識點(diǎn)總結(jié)06-28
初中數(shù)學(xué)絕對值的重要知識點(diǎn)總結(jié)參考06-28
優(yōu)秀的初中數(shù)學(xué)絕對值的重要知識點(diǎn)總結(jié)06-28
高三數(shù)學(xué)重要知識點(diǎn)總結(jié)07-05
數(shù)學(xué)絕對值的重要知識點(diǎn)總結(jié)06-28
初中數(shù)學(xué)的知識點(diǎn)總結(jié)12-12