97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

大數(shù)據(jù)分析及處理方法

時(shí)間:2022-06-20 13:53:53 科普知識(shí) 我要投稿
  • 相關(guān)推薦

大數(shù)據(jù)分析及處理方法

  越來(lái)越多的應(yīng)用涉及到大數(shù)據(jù),這些大數(shù)據(jù)的屬性,包括數(shù)量,速度,多樣性等等都是呈現(xiàn)了大數(shù)據(jù)不斷增長(zhǎng)的復(fù)雜性,所以,大數(shù)據(jù)的分析方法在大數(shù)據(jù)領(lǐng)域就顯得尤為重要,可以說(shuō)是決定最終信息是否有價(jià)值的決定性因素。下面,小編為大家分享大數(shù)據(jù)分析及處理方法,希望對(duì)大家有所幫助!

  大數(shù)據(jù)的處理

  周濤博士說(shuō):大數(shù)據(jù)處理數(shù)據(jù)時(shí)代理念的三大轉(zhuǎn)變:要全體不要抽樣,要效率不要絕對(duì)精確,要相關(guān)不要因果。

  具體的大數(shù)據(jù)處理方法其實(shí)有很多,但是根據(jù)長(zhǎng)時(shí)間的實(shí)踐,筆者總結(jié)了一個(gè)基本的大數(shù)據(jù)處理流程,并且這個(gè)流程應(yīng)該能夠?qū)Υ蠹依眄槾髷?shù)據(jù)的處理有所幫助。整個(gè)處理流程可以概括為四步,分別是采集、導(dǎo)入和預(yù)處理、統(tǒng)計(jì)和分析,以及挖掘。

  采集

  大數(shù)據(jù)的采集是指利用多個(gè)數(shù)據(jù)庫(kù)來(lái)接收發(fā)自客戶端(Web、App或者傳感器形式等)的數(shù)據(jù),并且用戶可以通過(guò)這些數(shù)據(jù)庫(kù)來(lái)進(jìn)行簡(jiǎn)單的查詢和處理工作。比如,電商會(huì)使用傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)MySQL和Oracle等來(lái)存儲(chǔ)每一筆事務(wù)數(shù)據(jù),除此之外,Redis和MongoDB這樣的NoSQL數(shù)據(jù)庫(kù)也常用于數(shù)據(jù)的采集。

  在大數(shù)據(jù)的采集過(guò)程中,其主要特點(diǎn)和挑戰(zhàn)是并發(fā)數(shù)高,因?yàn)橥瑫r(shí)有可能會(huì)有成千上萬(wàn)的用戶來(lái)進(jìn)行訪問(wèn)和操作,比如火車票售票網(wǎng)站和淘寶,它們并發(fā)的訪問(wèn)量在峰值時(shí)達(dá)到上百萬(wàn),所以需要在采集端部署大量數(shù)據(jù)庫(kù)才能支撐。并且如何在這些數(shù)據(jù)庫(kù)之間進(jìn)行負(fù)載均衡和分片的確是需要深入的思考和設(shè)計(jì)。

  導(dǎo)入/預(yù)處理

  雖然采集端本身會(huì)有很多數(shù)據(jù)庫(kù),但是如果要對(duì)這些海量數(shù)據(jù)進(jìn)行有效的分析,還是應(yīng)該將這些來(lái)自前端的數(shù)據(jù)導(dǎo)入到一個(gè)集中的大型分布式數(shù)據(jù)庫(kù),或者分布式存儲(chǔ)集群,并且可以在導(dǎo)入基礎(chǔ)上做一些簡(jiǎn)單的清洗和預(yù)處理工作。也有一些用戶會(huì)在導(dǎo)入時(shí)使用來(lái)自Twitter的Storm來(lái)對(duì)數(shù)據(jù)進(jìn)行流式計(jì)算,來(lái)滿足部分業(yè)務(wù)的實(shí)時(shí)計(jì)算需求。

  導(dǎo)入與預(yù)處理過(guò)程的特點(diǎn)和挑戰(zhàn)主要是導(dǎo)入的數(shù)據(jù)量大,每秒鐘的導(dǎo)入量經(jīng)常會(huì)達(dá)到百兆,甚至千兆級(jí)別。

  統(tǒng)計(jì)/分析

  統(tǒng)計(jì)與分析主要利用分布式數(shù)據(jù)庫(kù),或者分布式計(jì)算集群來(lái)對(duì)存儲(chǔ)于其內(nèi)的海量數(shù)據(jù)進(jìn)行普通的分析和分類匯總等,以滿足大多數(shù)常見(jiàn)的分析需求,在這方面,一些實(shí)時(shí)性需求會(huì)用到EMC 的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存儲(chǔ)Infobright等,而一些批處理,或者基于半結(jié)構(gòu)化數(shù)據(jù)的需求可以使用Hadoop。

  統(tǒng)計(jì)與分析這部分的主要特點(diǎn)和挑戰(zhàn)是分析涉及的數(shù)據(jù)量大,其對(duì)系統(tǒng)資源,特別是I/O會(huì)有極大的占用。

  挖掘

  與前面統(tǒng)計(jì)和分析過(guò)程不同的是,數(shù)據(jù)挖掘一般沒(méi)有什么預(yù)先設(shè)定好的主題,主要是在現(xiàn)有數(shù)據(jù)上面進(jìn)行基于各種算法的計(jì)算,從而起到預(yù)測(cè)(Predict)的效果,從而實(shí)現(xiàn)一些高級(jí)別數(shù)據(jù)分析的需求。比較典型算法有用于聚類的K-Means、用于統(tǒng)計(jì)學(xué)習(xí)的SVM和用于分類的Naive Bayes,主要使用的工具有Hadoop的Mahout等。

  該過(guò)程的特點(diǎn)和挑戰(zhàn)主要是用于挖掘的算法很復(fù)雜,并且計(jì)算涉及的數(shù)據(jù)量和計(jì)算量都很大,還有,常用數(shù)據(jù)挖掘算法都以單線程為主。

  大數(shù)據(jù)分析的五個(gè)基本方面

  1. Analytic Visualizations(可視化分析)

  不管是對(duì)數(shù)據(jù)分析專家還是普通用戶,數(shù)據(jù)可視化是數(shù)據(jù)分析工具最基本的要求?梢暬梢灾庇^的展示數(shù)據(jù),讓數(shù)據(jù)自己說(shuō)話,讓觀眾聽(tīng)到結(jié)果。

  2. Data Mining Algorithms(數(shù)據(jù)挖掘算法)

  可視化是給人看的,數(shù)據(jù)挖掘就是給機(jī)器看的。集群、分割、孤立點(diǎn)分析還有其他的算法讓我們深入數(shù)據(jù)內(nèi)部,挖掘價(jià)值。這些算法不僅要處理大數(shù)據(jù)的量,也要處理大數(shù)據(jù)的速度。

  3. Predictive Analytic Capabilities(預(yù)測(cè)性分析能力)

  數(shù)據(jù)挖掘可以讓分析員更好的理解數(shù)據(jù),而預(yù)測(cè)性分析可以讓分析員根據(jù)可視化分析和數(shù)據(jù)挖掘的結(jié)果做出一些預(yù)測(cè)性的判斷。

  4. Semantic Engines(語(yǔ)義引擎)

  我們知道由于非結(jié)構(gòu)化數(shù)據(jù)的多樣性帶來(lái)了數(shù)據(jù)分析的新的挑戰(zhàn),我們需要一系列的工具去解析,提取,分析數(shù)據(jù)。語(yǔ)義引擎需要被設(shè)計(jì)成能夠從“文檔”中智能提取信息。

  5. Data Quality and Master Data Management(數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理)

  數(shù)據(jù)質(zhì)量和數(shù)據(jù)管理是一些管理方面的最佳實(shí)踐。通過(guò)標(biāo)準(zhǔn)化的流程和工具對(duì)數(shù)據(jù)進(jìn)行處理可以保證一個(gè)預(yù)先定義好的高質(zhì)量的分析結(jié)果。

  假如大數(shù)據(jù)真的是下一個(gè)重要的技術(shù)革新的話,我們最好把精力關(guān)注在大數(shù)據(jù)能給我們帶來(lái)的好處,而不僅僅是挑戰(zhàn)。


【大數(shù)據(jù)分析及處理方法】相關(guān)文章:

大數(shù)據(jù)分析方法06-26

大數(shù)據(jù)分析07-25

大數(shù)據(jù)分析07-20

大數(shù)據(jù)理論指導(dǎo)交通數(shù)據(jù)分析的方法07-10

大數(shù)據(jù)分析就業(yè)前景06-26

大數(shù)據(jù)分析工具有哪些07-11

讓高管了解大數(shù)據(jù)分析07-10

騰訊的大數(shù)據(jù)分析能力如何?07-10

大數(shù)據(jù)分析與應(yīng)用問(wèn)題研究06-26

大數(shù)據(jù)分析合集(6篇)07-25