- 相關(guān)推薦
平面及立體圖形知識點總結(jié)
平面圖形
1長方形
(1)特征
對邊相等,4個角都是直角的四邊形。有兩條對稱軸。
(2)計算公式
c=2(a+b)
s=ab
2正方形
(1)特征:
四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。
(2)計算公式
c=4a
s=a2
3三角形
(1)特征
由三條線段圍成的圖形。內(nèi)角和是180度。三角形具有穩(wěn)定性。三角形有三條高。
(2)計算公式
s=ah/2
(3) 分類
按角分
銳角三角形 :三個角都是銳角。
直角三角形 :有一個角是直角。等腰三角形的兩個銳角各為45度,它有一條對稱軸。
鈍角三角形:有一個角是鈍角。
按邊分
不等邊三角形:三條邊長度不相等。
等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。
等邊三角形:三條邊長度都相等;三個內(nèi)角都是60度;有三條對稱軸。
4平行四邊形
(1) 特征
兩組對邊分別平行的四邊形。
相對的邊平行且相等。對角相等,相鄰的兩個角的度數(shù)之和為180度。平行四邊形容易變形。
(2) 計算公式
s=ah
5 梯形
(1)特征
只有一組對邊平行的四邊形。
中位線等于上下底和的一半。
等腰梯形有一條對稱軸。
(2) 公式
s=(a+b)h/2=mh
6 圓
(1) 圓的認(rèn)識
平面上的一種曲線圖形。
圓中心的一點叫做圓心。一般用字母o表示。
半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。
在同一個圓里,有無數(shù)條半徑,每條半徑的長度都相等。
通過圓心并且兩端都在圓上的線段叫做直徑。一般用d表示。
同一個圓里有無數(shù)條直徑,所有的直徑都相等。
同一個圓里,直徑等于兩個半徑的長度,即d=2r。
圓的大小由半徑?jīng)Q定。 圓有無數(shù)條對稱軸。
(2)圓的畫法
把圓規(guī)的兩腳分開,定好兩腳間的距離(即半徑);
把有針尖的一只腳固定在一點(即圓心)上;
把裝有鉛筆尖的一只腳旋轉(zhuǎn)一周,就畫出一個圓。
(3) 圓的周長
圍成圓的曲線的長叫做圓的周長。
把圓的周長和直徑的比值叫做圓周率。用字母∏表示。
(4) 圓的面積
圓所占平面的大小叫做圓的面積。
(5)計算公式
d=2r
r=d/2
c=∏d
c=2∏r
s=∏r2
7扇形
(1) 扇形的認(rèn)識
一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。
圓上AB兩點之間的部分叫做弧,讀作“弧AB”。
頂點在圓心的角叫做圓心角。
在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關(guān)。
扇形有一條對稱軸。
(2) 計算公式
s=n∏r2/360
8環(huán)形
(1) 特征
由兩個半徑不相等的同心圓相減而成,有無數(shù)條對稱軸。
(2) 計算公式
s=∏(R2-r2)
9軸對稱圖形
(1) 特征
如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
正方形有4條對稱軸, 長方形有2條對稱軸。
等腰三角形有2條對稱軸,等邊三角形有3條對稱軸。
等腰梯形有一條對稱軸,圓有無數(shù)條對稱軸。
菱形有4條對稱軸,扇形有一條對稱軸。
立體圖形
(一)長方體
1 特征
六個面都是長方形(有時有兩個相對的面是正方形)。
相對的面面積相等,12條棱相對的4條棱長度相等。
有8個頂點。
相交于一個頂點的三條棱的長度分別叫做長、寬、高。
兩個面相交的邊叫做棱。
三條棱相交的點叫做頂點。
把長方體放在桌面上,最多只能看到三個面。
長方體或者正方體6個面的總面積,叫做它的表面積。
2 計算公式
s=2(ab+ah+bh)
V=sh
V=abh
(二)正方體
1 特征
六個面都是正方形
六個面的面積相等
12條棱,棱長都相等
有8個頂點
正方體可以看作特殊的長方體
2 計算公式
S表=6a2
v=a3
(三)圓柱
1圓柱的認(rèn)識
圓柱的上下兩個面叫做底面。
圓柱有一個曲面叫做側(cè)面。
圓柱兩個底面之間的距離叫做高 。
進一法:實際中,使用的材料都要比計算的結(jié)果多一些 ,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
2計算公式
s側(cè)=ch
s表=s側(cè)+s底×2
v=sh/3
(四)圓錐
1 圓錐的認(rèn)識
圓錐的底面是個圓,圓錐的側(cè)面是個曲面。
從圓錐的頂點到底面圓心的距離是圓錐的高。
測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。
把圓錐的側(cè)面展開得到一個扇形。 2計算公式
v= sh/3
(五)球
1 認(rèn)識
球的表面是一個曲面,這個曲面叫做球面。
球和圓類似,也有一個球心,用O表示。
從球心到球面上任意一點的線段叫做球的半徑,用r表示,每條半徑都相等。
通過球心并且兩端都在球面上的線段,叫做球的直徑,用d表示,每條直徑都相等,直徑的長度等于半徑的2倍,即d=2r。
2 計算公式
d=2r
【平面及立體圖形知識點總結(jié)】相關(guān)文章:
小升初《平面圖形》知識點總結(jié)07-03
《認(rèn)識立體圖形》教學(xué)設(shè)計05-02
《立體圖形復(fù)習(xí)》教學(xué)設(shè)計05-10
認(rèn)識立體圖形教學(xué)反思06-28
人教版《認(rèn)識立體圖形》教學(xué)設(shè)計07-04
認(rèn)識立體圖形的教后反思06-29
立體幾何圖形折紙圖解06-29
《認(rèn)識平面圖形》的教案06-28