97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

數(shù)學(xué)教案的運(yùn)用完全平方公式法

時(shí)間:2022-06-28 08:22:10 其他 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)教案的運(yùn)用完全平方公式法

  教學(xué)目標(biāo)

數(shù)學(xué)教案的運(yùn)用完全平方公式法

  1。使學(xué)生會分析和判斷一個(gè)多項(xiàng)式是否為完全平方式,初步掌握運(yùn)用完全平方式把多項(xiàng)式分解因式的方法;

  2。理解完全平方式的意義和特點(diǎn),培養(yǎng)學(xué)生的判斷能力。

  3.進(jìn)一步培養(yǎng)學(xué)生全面地觀察問題、分析問題和逆向思維的能力.

  4.通過運(yùn)用公式法分解因式的教學(xué),使學(xué)生進(jìn)一步體會“把一個(gè)代數(shù)式看作一個(gè)字母”的換元思想。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):運(yùn)用完全平方式分解因式。

  難點(diǎn):靈活運(yùn)用完全平方公式公解因式。

  教學(xué)過程設(shè)計(jì)

  一、復(fù)習(xí)

  1。問:什么叫把一個(gè)多項(xiàng)式因式分解?我們已經(jīng)學(xué)習(xí)了哪些因式分解的方法?

  答:把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積形式,叫做把這個(gè)多項(xiàng)式因式分解。我們學(xué)過的因式分解的方法有提取公因式法及運(yùn)用平方差公式法。

  2。把下列各式分解因式:

  (1)ax4-ax2 (2)16m4-n4。

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

  (2) 16m4-n4=(4m2)2-(n2)2

  =(4m2+n2)(4m2-n2)

  =(4m2+n2)(2m+n)(2m-n)。

  問:我們學(xué)過的乘法公式除了平方差公式之外,還有哪些公式?

  答:有完全平方公式。

  請寫出完全平方公式。

  完全平方公式是:

  (a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。

  這節(jié)課我們就來討論如何運(yùn)用完全平方公式把多項(xiàng)式因式分解。

  二、新課

  和討論運(yùn)用平方差公式把多項(xiàng)式因式分解的思路一樣,把完全平方公式反過來,就得到

  a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。

  這就是說,兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個(gè)公式就是完全平方公式。運(yùn)用這兩個(gè)式子,可以把形式是完全平方式的多項(xiàng)式分解因式。

  問:具備什么特征的多項(xiàng)是完全平方式?

  答:一個(gè)多項(xiàng)式如果是由三部分組成,其中的兩部分是兩個(gè)式子(或數(shù))的平方,并且這兩部分的符號都是正號,第三部分是上面兩個(gè)式子(或數(shù))的乘積的二倍,符號可正可負(fù),像這樣的式子就是完全平方式。

  問:下列多項(xiàng)式是否為完全平方式?為什么?

  (1)x2+6x+9; (2)x2+xy+y2;

  (3)25x4-10x2+1; (4)16a2+1。

  答:(1)式是完全平方式。因?yàn)閤2與9分別是x的平方與3的平方,6x=2·x·3,所以

  x2+6x+9=(x+3) 。

  (2)不是完全平方式。因?yàn)榈谌糠直仨毷?xy。

  (3)是完全平方式。25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

  25x -10x +1=(5x-1) 。

  (4)不是完全平方式。因?yàn)槿钡谌糠帧?/p>

  請同學(xué)們用箭頭表示完全平方公式中的a,b與多項(xiàng)式9x2+6xy+y2中的對應(yīng)項(xiàng),其中a=?b=?2ab=?

  答:完全平方公式為:

  其中a=3x,b=y,2ab=2·(3x)·y。

  例1 把25x4+10x2+1分解因式。

  分析:這個(gè)多項(xiàng)式是由三部分組成,第一項(xiàng)“25x4”是(5x2)的平方,第三項(xiàng)“1”是1的平方,第二項(xiàng)“10x2”是5x2與1的積的2倍。所以多項(xiàng)式25x4+10x2+1是完全平方式,可以運(yùn)用完全平方公式分解因式。

  解 25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2。

  例2 把1- m+ 分解因式。

  問:請同學(xué)分析這個(gè)多項(xiàng)式的特點(diǎn),是否可以用完全平方公式分解因式?有幾種解法?

  答:這個(gè)多項(xiàng)式由三部分組成,第一項(xiàng)“1”是1的平方,第三項(xiàng)“ ”是 的平方,第二項(xiàng)“- m”是1與m/4的積的2倍的相反數(shù),因此這個(gè)多項(xiàng)式是完全平方式,可以用完全平方公式分解因式。

  解法1 1- m+ =1-2·1· +( )2=(1- )2。

  解法2 先提出 ,則

  1- m+ = (16-8m+m2)

  = (42-2·4·m+m2)

  = (4-m)2。

  三、課堂練習(xí)(投影)

  1。填空:

  (1)x2-10x+( )2=( )2;

  (2)9x2+( )+4y2=( )2;

  (3)1-( )+m2/9=( )2。

  2。下列各多項(xiàng)式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請把多

  項(xiàng)式改變?yōu)橥耆椒绞健?/p>

  (1)x2-2x+4; (2)9x2+4x+1; (3)a2-4ab+4b2;

  (4)9m2+12m+4; (5)1-a+a2/4。

  3。把下列各式分解因式:

  (1)a2-24a+144; (2)4a2b2+4ab+1;

  (3)19x2+2xy+9y2; (4)14a2-ab+b2。

  答案:

  1。(1)25,(x-5) 2; (2)12xy,(3x+2y) 2; (3)2m/3,(1-m3)2。

  2。(1)不是完全平方式,如果把第二項(xiàng)的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項(xiàng)的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式。

  (2)不是完全平方式,如果把第二項(xiàng)“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式。

  (3)是完全平方式,a2-4ab+4b2=(a-2b)2。

  (4)是完全平方式,9m2+12m+4=(3m+2) 2。

  (5)是完全平方式,1-a+a2/4=(1-a2)2。

  3。(1)(a-12) 2; (2)(2ab+1) 2;

  (3)(13x+3y) 2; (4)(12a-b)2。

  四、小結(jié)

  運(yùn)用完全平方公式把一個(gè)多項(xiàng)式分解因式的主要思路與方法是:

  1。首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個(gè)完全平方式,如果這個(gè)多項(xiàng)式是一個(gè)完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解。有時(shí)需要先把多項(xiàng)式經(jīng)過適當(dāng)變形,得到一個(gè)完全平方式,然后再把它因式分解。

  2。在選用完全平方公式時(shí),關(guān)鍵是看多項(xiàng)式中的第二項(xiàng)的符號,如果是正號,則用公式a2+2ab+b2=(a+b) 2;如果是負(fù)號,則用公式a2-2ab+b2=(a-b) 2。

  五、作業(yè)

  把下列各式分解因式:

  1。(1)a2+8a+16; (2)1-4t+4t2;

  (3)m2-14m+49; (4)y2+y+1/4。

  2。(1)25m2-80m+64; (2)4a2+36a+81;

  (3)4p2-20pq+25q2; (4)16-8xy+x2y2;

  (5)a2b2-4ab+4; (6)25a4-40a2b2+16b4。

  3。(1)m2n-2mn+1; (2)7am+1-14am+7am-1;

  4。(1) x -4x; (2)a5+a4+ a3。

  答案:

  1。(1)(a+4)2; (2)(1-2t)2;

  (3)(m-7) 2; (4)(y+12)2。

  2。(1)(5m-8) 2; (2)(2a+9) 2;

  (3)(2p-5q) 2; (4)(4-xy) 2;

  (5)(ab-2) 2; (6)(5a2-4b2) 2。

  3。(1)(mn-1) 2; (2)7am-1(a-1) 2。

  4。(1) x(x+4)(x-4); (2)14a3 (2a+1) 2。

  課堂教學(xué)設(shè)計(jì)說明

  1。利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。

  2。本節(jié)課要求學(xué)生掌握完全平方公式的特點(diǎn)和靈活運(yùn)用公式把多項(xiàng)式進(jìn)行因式分解的方法。在教學(xué)設(shè)計(jì)中安排了形式多樣的課堂練習(xí),讓學(xué)生從不同側(cè)面理解完全平方公式的特點(diǎn)。例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運(yùn)用平方公式進(jìn)行完全因式分解的方法。

【數(shù)學(xué)教案的運(yùn)用完全平方公式法】相關(guān)文章:

完全平方公式的課后反思03-23

完全平方公式教學(xué)設(shè)計(jì)06-08

《完全平方公式》教學(xué)設(shè)計(jì)10-27

利用公式法(完全平方公式)因式分解課堂實(shí)錄07-02

平方差公式教學(xué)設(shè)計(jì)10-20

《平方差公式》評課稿07-23

數(shù)學(xué)《平方差公式》導(dǎo)學(xué)案課件06-28

熟練運(yùn)用數(shù)學(xué)公式方法大全06-28

高中數(shù)學(xué)的平方差公式大全06-29

八年級數(shù)學(xué)《運(yùn)用平方差公式進(jìn)行因式分解》評課稿06-28