- 相關(guān)推薦
數(shù)學(xué)公式的記憶口訣
一、不等式
解不等式的途徑,利用函數(shù)的性質(zhì)。
對(duì)指無理不等式,化為有理不等式。
高次向著低次代,步步轉(zhuǎn)化要等價(jià)。
數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。
證不等式的方法,實(shí)數(shù)性質(zhì)威力大。
求差與0比大小,作商和1爭高下。
直接困難分析好,思路清晰綜合法。
非負(fù)常用基本式,正面難則反證法。
還有重要不等式,以及數(shù)學(xué)歸納法。
圖形函數(shù)來幫助,畫圖建模構(gòu)造法。
二、數(shù)列
等差等比兩數(shù)列,通項(xiàng)公式N項(xiàng)和。
兩個(gè)有限求極限,四則運(yùn)算順序換。
數(shù)列問題多變幻,方程化歸整體算。
數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換,
取長補(bǔ)短高斯法,裂項(xiàng)求和公式算。
歸納思想非常好,編個(gè)程序好思考:
一算二看三聯(lián)想,猜測(cè)證明不可少。
還有數(shù)學(xué)歸納法,證明步驟程序化:
首先驗(yàn)證再假定,從K向著K加1,
推論過程須詳盡,歸納原理來肯定。
三、立體幾何
點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇怼?/p>
距離都從點(diǎn)出發(fā),角度皆為線線成。
垂直平行是重點(diǎn),證明須弄清概念。
線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。
方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。
計(jì)算之前須證明,畫好移出的圖形。
立體幾何輔助線,常用垂線和平面。
射影概念很重要,對(duì)于解題最關(guān)鍵。
異面直線二面角,體積射影公式活。
公理性質(zhì)三垂線,解決問題一大片。
四、集合與函數(shù)
內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。
性質(zhì)奇偶與增減,觀察圖象最明顯。
復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,
若要詳細(xì)證明它,還須將那定義抓。
指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。
底數(shù)非1的正數(shù),1兩邊增減變故。
函數(shù)定義域好求。分母不能等于0,
偶次方根須非負(fù),零和負(fù)數(shù)無對(duì)數(shù);
正切函數(shù)角不直,余切函數(shù)角不平;
其余函數(shù)實(shí)數(shù)集,多種情況求交集。
兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;
圖象互為軸對(duì)稱,Y=X是對(duì)稱軸;
求解非常有規(guī)律,反解換元定義域;
反函數(shù)的定義域,原來函數(shù)的值域。
冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);
函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),
奇母偶子偶函數(shù),偶母非奇偶函數(shù);
圖象第一象限內(nèi),函數(shù)增減看正負(fù)。
【數(shù)學(xué)公式的記憶口訣】相關(guān)文章:
數(shù)學(xué)公式口訣大全06-29
數(shù)學(xué)公式口訣速記02-03
初中數(shù)學(xué)公式易記口訣06-28
數(shù)學(xué)公式記憶方法06-28
古代文化記憶口訣07-04
交通手勢(shì)記憶口訣圖解07-02
科目一考試技巧記憶口訣07-02
高二《生活與哲學(xué)》記憶口訣歸納07-03