- 相關(guān)推薦
排列教學(xué)目標(biāo)模板
導(dǎo)語(yǔ):排列教學(xué)目標(biāo)模板目的是正確理解排列的意義。能利用樹形圖寫出簡(jiǎn)單問(wèn)題的所有排列;以下是小編整理的排列教學(xué)目標(biāo)模板,歡迎閱讀參考。
教學(xué)目標(biāo)
(1)正確理解排列的意義。能利用樹形圖寫出簡(jiǎn)單問(wèn)題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問(wèn)題,寫出符合要求的排列;
(3)掌握排列數(shù)公式,并能根據(jù)具體的問(wèn)題,寫出符合要求的排列數(shù);
(4)會(huì)分析與數(shù)字有關(guān)的排列問(wèn)題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;
(5)通過(guò)對(duì)排列應(yīng)用問(wèn)題的學(xué)習(xí),讓學(xué)生通過(guò)對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
二、重點(diǎn)難點(diǎn)分析
本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問(wèn)題.難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題.突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問(wèn)題當(dāng)中.
從n個(gè)不同元素中任取(≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取個(gè)元素的一個(gè)排列.因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同.排列數(shù)是指從n個(gè)不同元素中任取(≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù).排列與排列數(shù)是兩個(gè)概念,前者是具有個(gè)元素的排列,后者是這種排列的不同種數(shù).從集合的角度看,從n個(gè)元素的有限集中取出個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù).
公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解.要重點(diǎn)分析好 的推導(dǎo).
排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過(guò)本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問(wèn)題的能力.
在分析應(yīng)用題的解法時(shí),教材上先畫出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用.
在教學(xué)排列應(yīng)用題時(shí),開始應(yīng)要求學(xué)生寫解法要有簡(jiǎn)要的文字說(shuō)明,防止單純的只寫一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問(wèn)題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.
三、教法建議
、僭谥v解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念.一個(gè)排列是指“從n個(gè)不同元素中,任取出個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù).例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào) 表示排列數(shù).
、谂帕械亩x中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”.
從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.
在定義中“一定順序”就是說(shuō)與位置有關(guān),在實(shí)際問(wèn)題中,要由具體問(wèn)題的性質(zhì)和條件來(lái)決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別.
在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時(shí)叫全排列.
要特別注意,不加特殊說(shuō)明,本章不研究重復(fù)排列問(wèn)題.
③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué).公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解.課本上用的是不完全歸納法,先推導(dǎo) ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的.
導(dǎo)出公式 后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“”比較復(fù)雜的時(shí)候把公式寫錯(cuò).這個(gè)公式的特點(diǎn)可見課本第229頁(yè)的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是 ,共個(gè)因數(shù)相乘.”這實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘.
公式 是在引出全排列數(shù)公式 后,將排列數(shù)公式變形后得到的公式.對(duì)這個(gè)公式指出兩點(diǎn):(1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁(yè)例2就是用這個(gè)公式證明的問(wèn)題;(2)為使這個(gè)公式在 時(shí)也能成立,規(guī)定 ,如同 時(shí) 一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋.
④建議應(yīng)充分利用樹形圖對(duì)問(wèn)題進(jìn)行分析,這樣比較直觀,便于理解.
、輰W(xué)生在開始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫出解法的簡(jiǎn)要說(shuō)明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí).隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求.
教學(xué)設(shè)計(jì)示例
排列
教學(xué)目標(biāo)
(1)正確理解排列的意義。能利用樹形圖寫出簡(jiǎn)單問(wèn)題的所有排列;
(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問(wèn)題,寫出符合要求的排列;
(3)會(huì)分析與數(shù)字有關(guān)的排列問(wèn)題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn)是排列的定義、排列數(shù)并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問(wèn)題。
難點(diǎn)是解有關(guān)排列的應(yīng)用題。
教學(xué)過(guò)程設(shè)計(jì)
一、 復(fù)習(xí)引入
上節(jié)課我們學(xué)習(xí)了兩個(gè)基本原理,請(qǐng)大家完成以下兩題的練習(xí)(用投影儀出示):
1.書架上層放著50本不同的社會(huì)科學(xué)書,下層放著40本不同的自然科學(xué)的書.
(1)從中任取1本,有多少種取法?
(2)從中任取社會(huì)科學(xué)書與自然科學(xué)書各1本,有多少種不同的取法?
2.某農(nóng)場(chǎng)為了考察三個(gè)外地優(yōu)良品種A,B,C,計(jì)劃在甲、乙、丙、丁、戊共五種類型的土地上分別進(jìn)行引種試驗(yàn),問(wèn)共需安排多少個(gè)試驗(yàn)小區(qū)?
找一同學(xué)談解答并說(shuō)明怎樣思考的的過(guò)程
第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會(huì)科學(xué)書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學(xué)書,可以從40本中任取1本,有40種方法.根據(jù)加法原理,得到不同的取法種數(shù)是50+40=90.第(2)小題從書架上取社會(huì)科學(xué)、自然科學(xué)書各1本(共取出2本),可以分兩個(gè)步驟完成:第一步取一本社會(huì)科學(xué)書,第二步取一本自然科學(xué)書,根據(jù)乘法原理,得到不同的取法種數(shù)是: 50×40=2000.
第2題說(shuō),共有A,B,C三個(gè)優(yōu)良品種,而每個(gè)品種在甲類型土地上實(shí)驗(yàn)有三個(gè)小區(qū),在乙類型的土地上有三個(gè)小區(qū)……所以共需3×5=15個(gè)實(shí)驗(yàn)小區(qū).
二、 講授新課
學(xué)習(xí)了兩個(gè)基本原理之后,現(xiàn)在我們繼續(xù)學(xué)習(xí)排列問(wèn)題,這是我們本節(jié)討論的重點(diǎn).先從實(shí)例入手:
1.北京、上海、廣州三個(gè)民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同飛機(jī)票?
由學(xué)生設(shè)計(jì)好方案并回答.
(1)用加法原理設(shè)計(jì)方案.
首先確定起點(diǎn)站,如果北京是起點(diǎn)站,終點(diǎn)站是上;驈V州,需要制2種飛機(jī)票,若起點(diǎn)站是上海,終點(diǎn)站是北京或廣州,又需制2種飛機(jī)票;若起點(diǎn)站是廣州,終點(diǎn)站是北京或上海,又需要2種飛機(jī)票,共需要2+2+2=6種飛機(jī)票.
(2)用乘法原理設(shè)計(jì)方案.
首先確定起點(diǎn)站,在三個(gè)站中,任選一個(gè)站為起點(diǎn)站,有3種方法.即北京、上海、廣泛任意一個(gè)城市為起點(diǎn)站,當(dāng)選定起點(diǎn)站后,再確定終點(diǎn)站,由于已經(jīng)選了起點(diǎn)站,終點(diǎn)站只能在其余兩個(gè)站去選.那么,根據(jù)乘法原理,在三個(gè)民航站中,每次取兩個(gè),按起點(diǎn)站在前、終點(diǎn)站在后的順序排列不同方法共有3×2=6種.
根據(jù)以上分析由學(xué)生(板演)寫出所有種飛機(jī)票
再看一個(gè)實(shí)例.
在航海中,船艦常以“旗語(yǔ)”相互聯(lián)系,即利用不同顏色的旗子發(fā)送出各種不同的信號(hào).如有紅、黃、綠三面不同顏色的旗子,按一定順序同時(shí)升起表示一定的信號(hào),問(wèn)這樣總共可以表示出多少種不同的信號(hào)?
找學(xué)生談自己對(duì)這個(gè)問(wèn)題的想法.
事實(shí)上,紅、黃、綠三面旗子按一定順序的一個(gè)排法表示一種信號(hào),所以不同顏色的同時(shí)升起可以表示出來(lái)的信號(hào)種數(shù),也就是紅、黃、綠這三面旗子的所有不同順序的排法總數(shù).
首先,先確定最高位置的旗子,在紅、黃、綠這三面旗子中任取一個(gè),有3種方法;
其次,確定中間位置的旗子,當(dāng)最高位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.
根據(jù)乘法原理,用紅、黃、綠這三面旗子同時(shí)升起表示出所有信號(hào)種數(shù)是:3×2×1=6(種).
根據(jù)學(xué)生的分析,由另外的同學(xué)(板演)寫出三面旗子同時(shí)升起表示信號(hào)的所有情況.(包括每個(gè)位置情況)
第三個(gè)實(shí)例,讓全體學(xué)生都參加設(shè)計(jì),把所有情況(包括每個(gè)位置情況)寫出來(lái).
由數(shù)字1,2,3,4可以組成多少個(gè)沒(méi)有重復(fù)數(shù)字的三位數(shù)?寫出這些所有的三位數(shù).
根據(jù)乘法原理,從四個(gè)不同的數(shù)字中,每次取出三個(gè)排成三位數(shù)的方法共有4×3×2=24(個(gè)).
請(qǐng)板演的學(xué)生談?wù)勗鯓酉氲?
第一步,先確定百位上的數(shù)字.在1,2,3,4這四個(gè)數(shù)字中任取一個(gè),有4種取法.
第二步,確定十位上的數(shù)字.當(dāng)百位上的數(shù)字確定以后,十位上的數(shù)字只能從余下的三個(gè)數(shù)字去取,有3種方法.
第三步,確定個(gè)位上的數(shù)字.當(dāng)百位、十位上的數(shù)字都確定以后,個(gè)位上的數(shù)字只能從余下的兩個(gè)數(shù)字中去取,有2種方法.
根據(jù)乘法原理,所以共有4×3×2=24種.
下面由教師提問(wèn),學(xué)生回答下列問(wèn)題
(1)以上我們討論了三個(gè)實(shí)例,這三個(gè)問(wèn)題有什么共同的地方?
都是從一些研究的對(duì)象之中取出某些研究的對(duì)象.
(2)取出的這些研究對(duì)象又做些什么?
實(shí)質(zhì)上按著順序排成一排,交換不同的位置就是不同的情況.
(3)請(qǐng)大家看書,第×頁(yè)、第×行. 我們把被取的對(duì)象叫做雙元素,如上面問(wèn)題中的民航站、旗子、數(shù)字都是元素.
上面第一個(gè)問(wèn)題就是從3個(gè)不同的元素中,任取2個(gè),然后按一定順序排成一列,求一共有多少種不同的排法,后來(lái)又寫出所有排法.
第二個(gè)問(wèn)題,就是從3個(gè)不同元素中,取出3個(gè),然后按一定順序排成一列,求一共有多少排法和寫出所有排法.
第三個(gè)問(wèn)題呢?
從4個(gè)不同的元素中,任取3個(gè),然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.
給出排列定義
請(qǐng)看課本,第×頁(yè),第×行.一般地說(shuō),從n個(gè)不同的元素中,任取(≤n)個(gè)元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個(gè)不同元素中取出個(gè)元素的一個(gè)排列.
下面由教師提問(wèn),學(xué)生回答下列問(wèn)題
(1)按著這個(gè)定義,結(jié)合上面的問(wèn)題,請(qǐng)同學(xué)們談?wù)勈裁词窍嗤呐帕?什么是不同的排列?
從排列的定義知道,如果兩個(gè)排列相同,不僅這兩個(gè)排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個(gè)條件中,只要有一個(gè)條件不符合,就是不同的排列.
如第一個(gè)問(wèn)題中,北京—廣州,上!獜V州是兩個(gè)排列,第三個(gè)問(wèn)題中,213與423也是兩個(gè)排列.
再如第一個(gè)問(wèn)題中,北京—廣州,廣州—北京;第二個(gè)問(wèn)題中,紅黃綠與紅綠黃;第三個(gè)問(wèn)題中231和213雖然元素完全相同,但排列順序不同,也是兩個(gè)排列.
(2)還需要搞清楚一個(gè)問(wèn)題,“一個(gè)排列”是不是一個(gè)數(shù)?
生:“一個(gè)排列”不應(yīng)當(dāng)是一個(gè)數(shù),而應(yīng)當(dāng)指一件具體的事.如飛機(jī)票“北京—廣州”是一個(gè)排列,“紅黃綠”是一種信號(hào),也是一個(gè)排列.如果問(wèn)飛機(jī)票有多少種?能表示出多少種信號(hào).只問(wèn)種數(shù),不用把所有情況羅列出來(lái),才是一個(gè)數(shù).前面提到的第三個(gè)問(wèn)題,實(shí)質(zhì)上也是這樣的.
三、 課堂練習(xí)
大家思考,下面的排列問(wèn)題怎樣解?
有四張卡片,每張分別寫著數(shù)碼1,2,3,4.有四個(gè)空箱,分別寫著號(hào)碼1,2,3,4.把卡片放到空箱內(nèi),每箱必須并且只能放一張,而且卡片數(shù)碼與箱子號(hào)碼必須不一致,問(wèn)有多少種放法?(用投影儀示出)
分析:這是從四張卡片中取出4張,分別放在四個(gè)位置上,只要交換卡片位置,就是不同的放法,是個(gè)附有條件的排列問(wèn)題.
解法是:第一步把數(shù)碼卡片四張中2,3,4三張任選一個(gè)放在第1空箱.
第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.
第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.
第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:
所以,共有9種放法.
四、作業(yè)
課本:P232練習(xí)1,2,3,4,5,6,7.
【排列教學(xué)目標(biāo)】相關(guān)文章:
排列教學(xué)設(shè)計(jì)06-23
《簡(jiǎn)單的排列》教學(xué)設(shè)計(jì)04-26
排列教學(xué)設(shè)計(jì)(15篇)05-09
簡(jiǎn)單排列教學(xué)設(shè)計(jì)06-10
人教版數(shù)學(xué)《簡(jiǎn)單的排列》教學(xué)設(shè)計(jì)07-04
《簡(jiǎn)單的排列》教學(xué)設(shè)計(jì)9篇04-26
正式會(huì)議接待的座次排列07-13
間隔排列評(píng)課稿02-20