- 相關(guān)推薦
函數(shù)及其表示知識點總結(jié)
考點一映射的概念
1.了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多
2.映射:設(shè)A和B是兩個非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個元素x,在集合B中都存在唯一的一個元素與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個映射(apping).映射是特殊的對應(yīng),簡稱“對一”的對應(yīng)。包括:一對一多對一
考點二函數(shù)的概念
1.函數(shù):設(shè)A和B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個數(shù)x,在集合B中都存在唯一確定的數(shù)與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個函數(shù)。記作=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域。函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射。
2.函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系。這是判斷兩個函數(shù)是否為同一函數(shù)的依據(jù)。
3.區(qū)間的概念:設(shè)a,bR,且a<b.我們規(guī)定:
、(a,b)={xa<x<b}②[a,b]={xa≤x≤b}③[a,b)={xa≤x<b}④(a,b]={xa<x≤b}
、(a,+∞)={xx>a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx<b}⑧(-∞,b]={xx≤b}⑨(-∞,+∞)=R
考點三函數(shù)的表示方法
1.函數(shù)的三種表示方法列表法圖象法解析法
2.分段函數(shù):定義域的不同部分,有不同的對應(yīng)法則的函數(shù)。注意兩點:①分段函數(shù)是一個函數(shù),不要誤認為是幾個函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。
能力知識清單
考點一求定義域的幾種情況
、偃鬴(x)是整式,則函數(shù)的定義域是實數(shù)集R;
、谌鬴(x)是分式,則函數(shù)的定義域是使分母不等于0的實數(shù)集;
③若f(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實數(shù)集合;
、苋鬴(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零。
、.因為零的零次冪沒有意義,所以底數(shù)和指數(shù)不能同時為零。
⑥若f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實數(shù)集合;
、呷鬴(x)是由實際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實際問題
【函數(shù)及其表示知識點總結(jié)】相關(guān)文章:
初中數(shù)學(xué)正切函數(shù)的公式及其圖像的知識點03-22
初中函數(shù)知識點總結(jié)07-29
關(guān)于函數(shù)與方程的知識點總結(jié)10-17
初中數(shù)學(xué)所有函數(shù)的知識點總結(jié)11-22
二次函數(shù)知識點總結(jié)12-19
二次函數(shù)知識點總結(jié)07-03
樂音及其特征知識點總結(jié)06-28