- 相關(guān)推薦
17年中考數(shù)學(xué)基本定理總結(jié)
137、定理把圓分成n(n≥3):
(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)
142、正三角形面積√3a/4a表示邊長(zhǎng)
143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長(zhǎng)計(jì)算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
常用數(shù)學(xué)公式
乘法與因式分解
a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式
|a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a
-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系
X1+X2=-b/a
X1*X2=c/a
注:韋達(dá)定理
判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根
b2-4ac0注:方程有兩個(gè)不等的實(shí)根
b2-4ac0注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理:
a/sinA=b/sinB=c/sinC=2R
注:其中R表示三角形的外接圓半徑
余弦定理
b2=a2+c2-2accosB
注:角B是邊a和邊c的夾角