- 相關(guān)推薦
初二數(shù)學(xué)必考知識點(diǎn)歸納
在日復(fù)一日的學(xué)習(xí)中,大家對知識點(diǎn)應(yīng)該都不陌生吧?知識點(diǎn)也可以理解為考試時會涉及到的知識,也就是大綱的分支。還在苦惱沒有知識點(diǎn)總結(jié)嗎?下面是小編精心整理的初二數(shù)學(xué)必考知識點(diǎn)歸納,歡迎大家借鑒與參考,希望對大家有所幫助。
初二數(shù)學(xué)必考知識點(diǎn)歸納1
(一)提公因式法
1、在運(yùn)用提取公因式法把一個多項(xiàng)式因式分解時,首先觀察多項(xiàng)式的結(jié)構(gòu)特點(diǎn),確定多項(xiàng)式的公因式、當(dāng)多項(xiàng)式各項(xiàng)的公因式是一個多項(xiàng)式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項(xiàng)式,也可以把這個多項(xiàng)式因式看作一個整體,直接提取公因式;當(dāng)多項(xiàng)式各項(xiàng)的公因式是隱含的時候,要把多項(xiàng)式進(jìn)行適當(dāng)?shù)淖冃危蚋淖兎,直到可確定多項(xiàng)式的公因式、
2、運(yùn)用公式x2+(p+q)x+pq=(x+q)(x+p)進(jìn)行因式分解要注意:
1、必須先將常數(shù)項(xiàng)分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于
一次項(xiàng)的系數(shù)、
2、將常數(shù)項(xiàng)分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:
、倭谐龀(shù)項(xiàng)分解成兩個因數(shù)的積各種可能情況;
②嘗試其中的哪兩個因數(shù)的和恰好等于一次項(xiàng)系數(shù)、
3、將原多項(xiàng)式分解成(x+q)(x+p)的形式、
(二)分式的乘除法
1、把一個分式的分子與分母的公因式約去,叫做分式的約分、
2、分式進(jìn)行約分的目的是要把這個分式化為最簡分式、
3、如果分式的分子或分母是多項(xiàng)式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式、如果分子或分母中的多項(xiàng)式不能分解因式,此時就不能把分子、分母中的某些項(xiàng)單獨(dú)約分、
4、分式約分中注意正確運(yùn)用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)3、
5、分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負(fù)來處理、當(dāng)然,簡單的分式之分子分母可直接乘方、
6、注意混合運(yùn)算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減、
(三)分?jǐn)?shù)的加減法
1、通分與約分雖都是針對分式而言,但卻是兩種相反的變形、約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來、
2、通分和約分都是依據(jù)分式的基本性質(zhì)進(jìn)行變形,其共同點(diǎn)是保持分式的值不變、
3、一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項(xiàng)式,為進(jìn)一步運(yùn)算作準(zhǔn)備、
4、通分的依據(jù):分式的基本性質(zhì)、
5、通分的關(guān)鍵:確定幾個分式的公分母、通常取各分母的所有因式的次冪的積作公分母,這樣的'公分母叫做最簡公分母、
6、類比分?jǐn)?shù)的通分得到分式的通分:把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分、
7、同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。同分母的分式加減運(yùn)算,分母不變,把分子相加減,這就是把分式的運(yùn)算轉(zhuǎn)化為整式運(yùn)算。
8、異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质,然后再加減、
9、同分母分式相加減,分母不變,只須將分子作加減運(yùn)算,但注意每個分子是個整體,要適時添上括號、
10、對于整式和分式之間的加減運(yùn)算,則把整式看成一個整體,即看成是分母為1的分式,以便通分、
11、異分母分式的加減運(yùn)算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運(yùn)算簡化、
12、作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式、
(四)含有字母系數(shù)的一元一次方程
1、含有字母系數(shù)的一元一次方程
引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項(xiàng)。這個方程就是一個含有字母系數(shù)的一元一次方程。
含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。
初二數(shù)學(xué)必考知識點(diǎn)歸納2
一、在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。
二、平面直角坐標(biāo)系及有關(guān)概念
1、平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
2、為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個象限。
3、點(diǎn)的坐標(biāo)的概念
對于平面內(nèi)任意一點(diǎn)P,過點(diǎn)P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有,分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)
時,(a,b)和(b,a)是兩個不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對是一一對應(yīng)的。
4、不同位置的點(diǎn)的坐標(biāo)的特征
(1)、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限:x0
點(diǎn)P(x,y)在第二象限:x0
點(diǎn)P(x,y)在第三象限:x0
點(diǎn)P(x,y)在第四象限:x0
(2)、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上,y=0,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上,x=0,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上,x,y同時為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
(3)、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)
(4)、和坐標(biāo)軸平行的直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的'直線上的各點(diǎn)的橫坐標(biāo)相同。
(5)、關(guān)于x軸、y軸或原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p關(guān)于x軸對稱橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P(x,-y)
點(diǎn)P與點(diǎn)p關(guān)于y軸對稱縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P(-x,y)
點(diǎn)P與點(diǎn)p關(guān)于原點(diǎn)對稱橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對稱點(diǎn)為P(-x,-y)
(6)、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
(1)點(diǎn)P(x,y)到x軸的距離等于|y|;
(2)點(diǎn)P(x,y)到y(tǒng)軸的距離等于|x|;
(3)點(diǎn)P(x,y)到原點(diǎn)的距離等于根號x_x+y_y
三、坐標(biāo)變化與圖形變化的規(guī)律:
坐標(biāo)(x,y)的變化
圖形的變化
x a或y a
被橫向或縱向拉長(壓縮)為原來的a倍
x a,y a
放大(縮小)為原來的a倍
x (-1)或y (-1)
關(guān)于y軸或x軸對稱
x (-1),y (-1)
關(guān)于原點(diǎn)成中心對稱
x +a或y+ a
沿x軸或y軸平移a個單位
x +a,y+ a
沿x軸平移a個單位,再沿y軸平移a個單
初二數(shù)學(xué)必考知識點(diǎn)歸納3
軸對稱
一、知識框架:
二、知識概念:
1、基本概念:
、泡S對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形、
、苾蓚圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱、
⑶線段的垂直平分線:經(jīng)過線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線、
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形、相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角、
、傻冗吶切危喝龡l邊都相等的三角形叫做等邊三角形、
2、基本性質(zhì):
、艑ΨQ的性質(zhì):
、俨还苁禽S對稱圖形還是兩個圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線、
、趯ΨQ的圖形都全等、
⑵線段垂直平分線的性質(zhì):
、倬段垂直平分線上的點(diǎn)與這條線段兩個端點(diǎn)的距離相等、
、谂c一條線段兩個端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上、
、顷P(guān)于坐標(biāo)軸對稱的.點(diǎn)的坐標(biāo)性質(zhì)
①點(diǎn)P(x,y)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)為P'(x,y)、
②點(diǎn)P(x,y)關(guān)于y軸對稱的點(diǎn)的坐標(biāo)為P"(x,y)、
、鹊妊切蔚男再|(zhì):
、俚妊切蝺裳嗟、
、诘妊切蝺傻捉窍嗟(等邊對等角)、
、鄣妊切蔚捻斀墙瞧椒志、底邊上的中線,底邊上的高相互重合、
、艿妊切问禽S對稱圖形,對稱軸是三線合一(1條)、
⑸等邊三角形的性質(zhì):
、俚冗吶切稳叾枷嗟、
、诘冗吶切稳齻內(nèi)角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一、
、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條)、
3、基本判定:
⑴等腰三角形的判定:
、儆袃蓷l邊相等的三角形是等腰三角形、
、谌绻粋三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)、
、频冗吶切蔚呐卸ǎ
①三條邊都相等的三角形是等邊三角形、
②三個角都相等的三角形是等邊三角形、
、塾幸粋角是60°的等腰三角形是等邊三角形、
4、基本方法:
、抛鲆阎本的垂線:
、谱鲆阎段的垂直平分線:
、亲鲗ΨQ軸:連接兩個對應(yīng)點(diǎn),作所連線段的垂直平分線、
、茸饕阎獔D形關(guān)于某直線的對稱圖形:
⑸在直線上做一點(diǎn),使它到該直線同側(cè)的兩個已知點(diǎn)的距離之和最短、
【初二數(shù)學(xué)必考知識點(diǎn)歸納】相關(guān)文章:
高二化學(xué)考試必考知識點(diǎn)歸納整理03-29
初二數(shù)學(xué)基礎(chǔ)知識點(diǎn)歸納總結(jié)12-02
高一數(shù)學(xué)必考知識點(diǎn)總結(jié)10-18
高一生物必考知識點(diǎn)總結(jié)歸納精選五篇09-10
《圓》數(shù)學(xué)知識點(diǎn)歸納總結(jié)06-06
有關(guān)初中數(shù)學(xué)圓的知識點(diǎn)總結(jié)歸納04-20
初三數(shù)學(xué)知識點(diǎn)歸納總結(jié)06-08