- 相關推薦
初中數(shù)學圖形的公式大全
矩形的公式應用
例1:已知ABCD的對角線AC和BD相交于點O,△AOB是等邊三角形,AB= 4 cm.求這個平行四邊形的面積。
分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對角線互相平分的性質(zhì)判定出ABCD是矩形(如圖個4-37),再利用勾股定理計算邊長,從而得到面積為
例2:已知:如圖4-38在ABCD中,M為BC中點,∠MAD=∠MDA.求證:四邊形 ABCD是矩形.
分析:根據(jù)定義去證明一個角是直角,由△ABM≌DCM(SSS)即可實現(xiàn)。
例:3:已知:如圖4-39(a),ABCD的四個內(nèi)角平分線相交于點E,F(xiàn),G,H.求證:EG=FH.
分析:要證的EG,F(xiàn)H為四邊形EFGH的對角線,因此只需證明四邊形EFGH為矩形,而題目可分解出基本圖形:如圖4-39(b),因此,可選用“三個角是直角的四邊形是矩形”來證明.
例4:已知:如圖 4-40,在△ABC中,∠C= 90°, CD為中線,延長CD到點E,使得DE=CD.連結AE,BE,則四邊形ACBE為矩形.
正方形定理公式
正方形的特征:
①正方形的四邊相等;
、谡叫蔚乃膫角都是直角;
、壅叫蔚膬蓷l對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
①有一個角是直角的菱形是正方形;
②有一組鄰邊相等的矩形是正方形。
平行四邊形
平行四邊形的性質(zhì):
、倨叫兴倪呅蔚膶呄嗟龋
、谄叫兴倪呅蔚膶窍嗟;
、燮叫兴倪呅蔚膶蔷互相平分;
平行四邊形的判定:
、賰山M對角分別相等的四邊形是平行四邊形;
、趦山M對邊分別相等的四邊形是平行四邊形;
、蹖蔷互相平分的四邊形是平行四邊形;
④一組對邊平行且相等的四邊形是平行四邊形。
初中數(shù)學直角三角形定理公式
直角三角形的性質(zhì):
、僦苯侨切蔚膬蓚銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
、壑苯侨切蔚膬芍苯沁叺钠椒胶偷扔谛边叺钠椒剑ü垂啥ɡ恚
、苤苯侨切沃30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
、儆袃蓚角互余的三角形是直角三角形;
②如果三角形的三邊長a、b 、c有下面關系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
初中數(shù)學等腰三角形的性質(zhì)定理公式
等腰三角形的性質(zhì):
、俚妊切蔚膬蓚底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
初中數(shù)學三角形定理公式
三角形
三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(內(nèi)心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
【初中數(shù)學圖形的公式】相關文章:
數(shù)學圖形的定理公式06-28
小升初數(shù)學圖形計算公式匯編06-29
小學數(shù)學圖形計算公式整理03-22
初中幾何圖形證明判定公式匯總02-09
小升初數(shù)學立體圖形計算公式匯編06-29
數(shù)學圖形計算公式知識點匯總06-29
數(shù)學《圖形計算公式》知識點整理05-09
初中數(shù)學定理公式總結11-13
初中數(shù)學的公式口訣大全06-28