小學數(shù)學的思想方法
所謂的數(shù)學思想,是指人們對數(shù)學理論與內(nèi)容的本質(zhì)認識,是從某些具體數(shù)學認識過程中提煉出的一些觀點,是分析處理和解決數(shù)學問題的根本方法,也是對數(shù)學規(guī)律的理性認識。它揭示了數(shù)學發(fā)展中普遍的規(guī)律,它直接支配著數(shù)學的實踐活動,這是對數(shù)學規(guī)律的理性認識。下面是小編整理的小學數(shù)學的思想方法,歡迎來參考!
數(shù)學方法是數(shù)學思想的具體化形式,即解決數(shù)學具體問題時所采用的方式、途徑和手段,也可以說是解決數(shù)學問題的策略。實質(zhì)上兩者的本質(zhì)是相同的,差別只是站在不同的角度看問題,通;旆Q為思想方法。數(shù)學思想方法的自覺運用會使我們運算簡潔、推理機敏,是提高數(shù)學能力的必由之路。常見的數(shù)學思想方法有:數(shù)形結(jié)合方法、對應(yīng)思想方法、轉(zhuǎn)化思想方法、猜想驗證思想方法等。下面就以自己的教學實踐為例談?wù)勗趯嶋H教學中滲透這些數(shù)學思想方法的一些粗淺做法。
一、數(shù)形結(jié)合的思想方法
數(shù)和形是數(shù)學研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學概念,復雜的數(shù)量關(guān)系,借助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數(shù)量關(guān)系表示。在解應(yīng)用題中常常借助線段圖的直觀幫助分析數(shù)量關(guān)系。
在小學一年級剛開始學習數(shù)的認識時,都是以實物進行引入,再從中學習數(shù)字的實際含義。例如學習“6的認識”時,先出示主題圖,問學生圖中有些什么?學生從中數(shù)出6朵小花,6只小鳥,6個氣球。從而感知5的某些具體意義。再從實物中慢慢抽象成某一特定物體,利用學生的學具小棒擺出由6根小棒組成的任何圖形,從而讓學生在動手的過程中,不僅表現(xiàn)出自己的獨特創(chuàng)意,而且更深一層地理解6的實際意義;第三層次是利用黑板進行畫6個圓,6個正方形,6個三角形等特定圖形來代表6,從而慢慢抽象至數(shù)字6。這樣從實物至圖形,在抽象到數(shù)字,整個過程應(yīng)該符合一年級小學生的特點,也是數(shù)形結(jié)合思想的一種滲透。
二、對應(yīng)思想方法
利用數(shù)量間的對應(yīng)關(guān)系來思考數(shù)學問題,就是對應(yīng)思想。尋找數(shù)量之間的對應(yīng)關(guān)系,也是解答應(yīng)用題的一種重要的思維方式。
在低、中年級整數(shù)應(yīng)用題訓練時,教師就應(yīng)該讓學生明白數(shù)量之間存在著一一對應(yīng)的關(guān)系。
例如:水果店上午賣出蘋果6筐,下午又賣出同樣的蘋果8筐,比上午多賣100元,每筐蘋果多少元? 這里存在著錢數(shù)和筐數(shù)的對應(yīng)關(guān)系,學生如果能看出下午比上午多賣的100元對應(yīng)的筐數(shù)是(8-6)筐,此題就迎刃而解了,即100÷(8-6)=50(元)。
此外,在教學歸一問題、相遇問題時,都要讓學生找到題中數(shù)量之間的對應(yīng)關(guān)系。解決問題對于小學生是個抽象的問題,特別對于低、中年級學生更難理解。但找到了對應(yīng)關(guān)系,也就找到了解題的關(guān)鍵。
三、轉(zhuǎn)化思想方法
轉(zhuǎn)化就是在研究和解決有關(guān)數(shù)學問題時,采用某種手段將一個問題轉(zhuǎn)化成為另外一個問題來解決。一般是將復雜的問題轉(zhuǎn)化為簡單的問題,將難解問題轉(zhuǎn)化為容易求解的問題,將未解決的問題轉(zhuǎn)化為已解決的問題。
例如:上“整十、整百相加減”一課時,先讓學生觀察,然后問一問,能不能把整十、整百相加減化為我們以前所學過的幾加幾,幾減幾,這樣學生不僅很快能掌握新學得知識,還可以自己解決整百相加減。這正是再滲透轉(zhuǎn)化思想的方法。
四、猜想驗證思想方法
猜想驗證是一種重要的數(shù)學思想方法,正如荷蘭數(shù)學教育家弗賴登塔爾所說:“真正的數(shù)學家常常憑借數(shù)學的直覺思維做出各種猜想,然后加以證實!币虼耍W數(shù)學教學中,教師要重視猜想驗證思想方法的滲透,以增強學生主動探索和獲取數(shù)學知識的能力,促進學生創(chuàng)新能力的發(fā)展。
例如:教“乘法分配律”一課時,我設(shè)計了以下幾個環(huán)節(jié):
1、出示例題:(1)(6+8)×25 (2)6×25+8×25
學生獨自計算結(jié)果。
2、討論兩個算式的異同點。
3、根據(jù)自己的發(fā)現(xiàn)舉出類似的例子,并加以計算。
4、驗證后,總結(jié)歸律。
這樣,通過算、討論、說、算、說,學生初步感知了乘法分配律。至此,猜想乘法分配律已是水到渠成。
現(xiàn)代數(shù)學思想方法的內(nèi)涵極為豐富,諸如還有集合思想、極限思想、優(yōu)化思想、統(tǒng)計思想、等等,小學數(shù)學教學中都有所涉及。我們廣大小學數(shù)學教師要做教學有心人,有意滲透,有意點撥,重視數(shù)學史的滲透,重視課堂教學小結(jié),要以適應(yīng)小學生年齡特點的大眾化、生活化方式呈現(xiàn)教學內(nèi)容,讓學生通過現(xiàn)實活動,主動參與、自主探究,學會用數(shù)學思維方法提出問題、分析問題、解決問題,從而讓學生的數(shù)學思維能力得到切實、有效地發(fā)展,進而提高全民族的數(shù)學文化素養(yǎng)。在小學數(shù)學中,數(shù)學思想方法給出了解決問題的方向,給出了解決問題的策略。這就需要教師挖掘、提煉隱含于教材的思想方法,納入到教學目標。有目的、有計劃、有步驟地精心設(shè)計教學過程,有效地滲透數(shù)學思想方法。
【小學數(shù)學的思想方法】相關(guān)文章:
對小學數(shù)學教學中滲透數(shù)學思想方法的思考07-04
淺談數(shù)學思想方法教學07-03
小學數(shù)學教學中滲透數(shù)學思想方法的必要性07-04
數(shù)學教學思想方法的滲透路徑07-04
數(shù)學思想方法在教學中的作用07-04
關(guān)于淺談初中數(shù)學教學滲透的思想方法07-04
讀《數(shù)學思想方法與中學數(shù)學》心得體會07-03
思想方法和創(chuàng)新意識07-03