97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

數(shù)學(xué)專業(yè)考研生的解題思路

時(shí)間:2022-07-03 09:39:01 職業(yè)/專業(yè)/職能 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)專業(yè)考研生的解題思路

  第一部分 《高數(shù)解題的四種思維定勢》

數(shù)學(xué)專業(yè)考研生的解題思路

  1.在題設(shè)條件中給出一個(gè)函數(shù)f(x)二階和二階以上可導(dǎo),“不管三七二十一”,把f(x)在指定點(diǎn)展成泰勒公式再說。

  2.在題設(shè)條件或欲證結(jié)論中有定積分表達(dá)式時(shí),則“不管三七二十一”先用積分中值定理對該積分式處理一下再說。

  3.在題設(shè)條件中函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且f(a)=0或f(b)=0或f(a)=f(b)=0,則“不管三七二十一”先用拉格朗日中值定理處理一下再說。

  4.對定限或變限積分,若被積函數(shù)或其主要部分為復(fù)合函數(shù),則“不管三七二十一”先做變量替換使之成為簡單形式f(u)再說。

  第二部分 《線性代數(shù)解題的八種思維定勢》

  1.題設(shè)條件與代數(shù)余子式Aij或A*有關(guān),則立即聯(lián)想到用行列式按行(列)展開定理以及AA*=A*A=|A|E 。

  2.若涉及到A、B是否可交換,即AB=BA,則立即聯(lián)想到用逆矩陣的定義去分析。

  3.若題設(shè)n階方陣A滿足f(A)=0,要證aA+bE可逆,則先分解出因子aA+bE再說。

  4.若要證明一組向量a1,a2,…,as線性無關(guān),先考慮用定義再說。

  5.若已知AB=0,則將B的每列作為Ax=0的解來處理再說。

  6.若由題設(shè)條件要求確定參數(shù)的取值,聯(lián)想到是否有某行列式為零再說。

  7.若已知A的特征向量ζ,則先用定義Aζ=λζ處理一下再說。

  8.若要證明抽象n階實(shí)對稱矩陣A為正定矩陣,則用定義處理一下再說。

  第三部分《概率與數(shù)理統(tǒng)計(jì)解題的九種思維定勢》

  1.如果要求的是若干事件中“至少”有一個(gè)發(fā)生的概率,則馬上聯(lián)想到概率加法公式;當(dāng)事件組相互獨(dú)立時(shí),用對立事件的概率公式 。

  2.若給出的試驗(yàn)可分解成(0-1)的n重獨(dú)立重復(fù)試驗(yàn),則馬上聯(lián)想到Bernoulli試驗(yàn),及其概率計(jì)算公式

  3.若某事件是伴隨著一個(gè)完備事件組的發(fā)生而發(fā)生,則馬上聯(lián)想到該事件的發(fā)生概率是用全概率公式計(jì)算。關(guān)鍵:尋找完備事件組。

  4.若題設(shè)中給出隨機(jī)變量X ~ N 則馬上聯(lián)想到標(biāo)準(zhǔn)化 ~ N(0,1)來處理有關(guān)問題。

  5.求二維隨機(jī)變量(X,Y)的邊緣分布密度fx 的問題,應(yīng)該馬上聯(lián)想到先畫出使聯(lián)合分布密度的區(qū)域,然后定出X的變化區(qū)間,再在該區(qū)間內(nèi)畫一條//y軸的直線,先與區(qū)域邊界相交的為y的下限,后者為上限,而fy 的求法類似。

  6.欲求二維隨機(jī)變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應(yīng)該馬上聯(lián)想到二重積分 的計(jì)算,其積分域D是由聯(lián)合密度 的平面區(qū)域及滿足Y≥g(X)或(Y≤g(X))的區(qū)域的公共部分。

  7.涉及n次試驗(yàn)?zāi)呈录l(fā)生的次數(shù)X的數(shù)字特征的問題,馬上要聯(lián)想到對X作(0-1)分解。

  8.凡求解各概率分布已知的若干個(gè)獨(dú)立隨機(jī)變量組成的系統(tǒng)滿足某種關(guān)系的概率(或已知概率求隨機(jī)變量個(gè)數(shù))的問題,馬上聯(lián)想到用中心極限定理處理。

  9.若 為總體X的一組簡單隨機(jī)樣本,則凡是涉及到統(tǒng)計(jì)量 的分布問題,一般聯(lián)想到用x 分布,t分布和F分布的定義進(jìn)行討論。

【數(shù)學(xué)專業(yè)考研生的解題思路】相關(guān)文章:

解題思路初中數(shù)學(xué)07-09

雅思聽力考試解題黃金思路參考07-03

高考科技說明文的解題思路07-05

淺談科技說明文的解題思路07-05

數(shù)學(xué)專業(yè)考研心得12-27

考研哪些專業(yè)不考數(shù)學(xué)07-03

數(shù)學(xué)解題方法初中07-09

數(shù)學(xué)解題方法高中07-09

數(shù)學(xué)解題技巧12-03

淺談高考科技說明文的解題思路推薦07-04