97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-04-26 15:38:13 總結(jié)范文 我要投稿

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇

  總結(jié)是指社會(huì)團(tuán)體、企業(yè)單位和個(gè)人對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,讓我們一起來(lái)學(xué)習(xí)寫總結(jié)吧?偨Y(jié)怎么寫才能發(fā)揮它的作用呢?以下是小編整理的高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1

  立體幾何初步

  NO.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  棱柱

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的'平方。

  棱臺(tái)

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

  表示:用各頂點(diǎn)字母,如五棱臺(tái)

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  圓柱

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

  圓錐

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

  圓臺(tái)

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

  球體

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2

  冪函數(shù)的性質(zhì):

  對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來(lái)討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來(lái)源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

  排除了為0這種可能,即對(duì)于x<0x="">0的所有實(shí)數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

  總結(jié)起來(lái),就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的.不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

  如果a為負(fù)數(shù),則x肯定不能為0,不過(guò)這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來(lái)確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

  在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

  在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

  而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

  由于x大于0是對(duì)a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

  可以看到:

  (1)所有的圖形都通過(guò)(1,1)這點(diǎn)。

  (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

  (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

  (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

  (5)a大于0,函數(shù)過(guò)(0,0);a小于0,函數(shù)不過(guò)(0,0)點(diǎn)。

  (6)顯然冪函數(shù)_。

  解題方法:換元法

  解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這種方法叫換元法.換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法.通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái).或者變?yōu)槭煜さ男问,把?fù)雜的計(jì)算和推證簡(jiǎn)化。

  它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問(wèn)題中有廣泛的應(yīng)用。

  練習(xí)題:

  1、若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).

  (1)求f(log2x)的最小值及對(duì)應(yīng)的x值;

  (2)x取何值時(shí),f(log2x)>f(1)且log2[f(x)]

  2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(-2k,2)是函數(shù)y=f-1(x)圖象上的點(diǎn).[來(lái)源:Z_k.Com]

  (1)求實(shí)數(shù)k的值及函數(shù)f-1(x)的解析式;

  (2)將y=f-1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f-1(x+-3)-g(x)≥1恒成立,試求實(shí)數(shù)m的取值范圍.

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3

  一:函數(shù)及其表示

  知識(shí)點(diǎn)詳解文檔包含函數(shù)的概念、映射、函數(shù)關(guān)系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等

  1. 函數(shù)與映射的區(qū)別:

  2. 求函數(shù)定義域

  常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:

 、佼(dāng)f(x)為整式時(shí),函數(shù)的定義域?yàn)镽.

 、诋(dāng)f(x)為分式時(shí),函數(shù)的定義域?yàn)槭狗质椒帜覆粸榱愕膶?shí)數(shù)集合。

 、郛(dāng)f(x)為偶次根式時(shí),函數(shù)的定義域是使被開方數(shù)不小于0的實(shí)數(shù)集合。

 、墚(dāng)f(x)為對(duì)數(shù)式時(shí),函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實(shí)數(shù)集合。

 、萑绻鹒(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合,即求各部分有意義的實(shí)數(shù)集合的交集。

 、迯(fù)合函數(shù)的定義域是復(fù)合的各基本的`函數(shù)定義域的交集。

 、邔(duì)于由實(shí)際問(wèn)題的背景確定的函數(shù),其定義域除上述外,還要受實(shí)際問(wèn)題的制約。

  3. 求函數(shù)值域

  (1)、觀察法:通過(guò)對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域;

  (2)、配方法;如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過(guò)換元可以寫成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過(guò)自變量的范圍可以求出該函數(shù)的值域;

  (3)、判別式法:

  (4)、數(shù)形結(jié)合法;通過(guò)觀察函數(shù)的圖象,運(yùn)用數(shù)形結(jié)合的方法得到函數(shù)的值域;

  (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進(jìn)而求出值域;

  (6)、利用函數(shù)的單調(diào)性;如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來(lái)求出值域;

  (7)、利用基本不等式:對(duì)于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;

  (8)、最值法:對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;

  (9)、反函數(shù)法:如果函數(shù)在其定義域內(nèi)存在反函數(shù),那么求函數(shù)的值域可以轉(zhuǎn)化為求反函數(shù)的定義域。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運(yùn)算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

  2.分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  【函數(shù)的應(yīng)用】

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的'意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

  方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

  3、函數(shù)零點(diǎn)的求法:

  求函數(shù)的零點(diǎn):

  1(代數(shù)法)求方程的實(shí)數(shù)根;

  2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

  4、二次函數(shù)的零點(diǎn):

  二次函數(shù).

  1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5

  兩個(gè)平面的位置關(guān)系:

  (1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)

  (2)兩個(gè)平面的位置關(guān)系:

  兩個(gè)平面平行——沒有公共點(diǎn);兩個(gè)平面相交——有一條公共直線。

  a、平行

  兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

  兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。

  b、相交

  二面角

  (1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

  (2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

  (3)二面角的棱:這一條直線叫做二面角的棱。

  (4)二面角的面:這兩個(gè)半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  兩平面垂直

  兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥

  兩平面垂直的.判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直

  兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。

  二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)

  棱錐

  棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。

  棱錐的性質(zhì):

  (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個(gè)特殊的直角三角形

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

  b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.

  注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  定義域補(bǔ)充

  能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

  構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域

  再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的',所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無(wú)關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)

  值域補(bǔ)充

  (1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域.(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

  3.函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.

  C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}

  圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。

  (2)畫法

  A、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對(duì)應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x,y),最后用平滑的曲線將這些點(diǎn)連接起來(lái).

  B、圖象變換法(請(qǐng)參考必修4三角函數(shù))

  常用變換方法有三種,即平移變換、伸縮變換和對(duì)稱變換

  (3)作用:

  1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7

  本節(jié)內(nèi)容主要是空間點(diǎn)、直線、平面之間的位置關(guān)系,在認(rèn)識(shí)過(guò)程中,可以進(jìn)一步提高同學(xué)們的空間想象能力,發(fā)展推理能力.通過(guò)對(duì)實(shí)際模型的認(rèn)識(shí),學(xué)會(huì)將文字語(yǔ)言轉(zhuǎn)化為圖形語(yǔ)言和符號(hào)語(yǔ)言,以具體的長(zhǎng)方體中的點(diǎn)、線、面之間的關(guān)系作為載體,使同學(xué)們?cè)谥庇^感知的基礎(chǔ)上,認(rèn)識(shí)空間中點(diǎn)、線、面之間的位置關(guān)系,點(diǎn)、線、面的位置關(guān)系是立體幾何的主要研究對(duì)象,同時(shí)也是空間圖形最基本的幾何元素.

  重難點(diǎn)知識(shí)歸納

  1、平面

  (1)平面概念的理解

  直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

  抽象的理解:平面是平的,平面是無(wú)限延展的,平面沒有厚。

  (2)平面的表示法

 、賵D形表示法:通常用平行四邊形來(lái)表示平面,有時(shí)根據(jù)實(shí)際需要,也用其他的平面圖形來(lái)表示平面.

  ②字母表示:常用等希臘字母表示平面.

  (3)涉及本部分內(nèi)容的符號(hào)表示有:

 、冱c(diǎn)A在直線l內(nèi),記作; ②點(diǎn)A不在直線l內(nèi),記作;

 、埸c(diǎn)A在平面內(nèi),記作; ④點(diǎn)A不在平面內(nèi),記作;

 、葜本l在平面內(nèi),記作; ⑥直線l不在平面內(nèi),記作;

  注意:符號(hào)的使用與集合中這四個(gè)符號(hào)的使用的區(qū)別與聯(lián)系.

  (4)平面的基本性質(zhì)

  公理1:如果一條直線的兩個(gè)點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有點(diǎn)都在這個(gè)平面內(nèi).

  符號(hào)表示為:.

  注意:如果直線上所有的點(diǎn)都在一個(gè)平面內(nèi),我們也說(shuō)這條直線在這個(gè)平面內(nèi),或者稱平面經(jīng)過(guò)這條直線.

  公理2:過(guò)不在一條直線上的三點(diǎn),有且只有一個(gè)平面.

  符號(hào)表示為:直線AB存在唯一的平面,使得.

  注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來(lái)代替.此公理又可表示為:不共線的三點(diǎn)確定一個(gè)平面.

  公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線.

  符號(hào)表示為:.

  注意:兩個(gè)平面有一條公共直線,我們說(shuō)這兩個(gè)平面相交,這條公共直線就叫作兩個(gè)平面的交線.若平面、平面相交于直線l,記作.

  公理的推論:

  推論1:經(jīng)過(guò)一條直線和直線外的一點(diǎn)有且只有一個(gè)平面.

  推論2:經(jīng)過(guò)兩條相交直線有且只有一個(gè)平面.

  推論3:經(jīng)過(guò)兩條平行直線有且只有一個(gè)平面.

  2.空間直線

  (1)空間兩條直線的位置關(guān)系

 、傧嘟恢本:有且僅有一個(gè)公共點(diǎn),可表示為;

  ②平行直線:在同一個(gè)平面內(nèi),沒有公共點(diǎn),可表示為a//b;

 、郛惷嬷本:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn).

  (2)平行直線

  公理4:平行于同一條直線的兩條直線互相平行.

  符號(hào)表示為:設(shè)a、b、c是三條直線,.

  定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等.

  (3)兩條異面直線所成的角

  注意:

 、賰蓷l異面直線a,b所成的.角的范圍是(0°,90°].

 、趦蓷l異面直線所成的角與點(diǎn)O的選擇位置無(wú)關(guān),這可由前面所講過(guò)的“等角定理”直接得出.

 、塾蓛蓷l異面直線所成的角的定義可得出異面直線所成角的一般方法:

  (i)在空間任取一點(diǎn),這個(gè)點(diǎn)通常是線段的中點(diǎn)或端點(diǎn).

  (ii)分別作兩條異面直線的平行線,這個(gè)過(guò)程通常采用平移的方法來(lái)實(shí)現(xiàn).

  (iii)指出哪一個(gè)角為兩條異面直線所成的角,這時(shí)我們要注意兩條異面直線所成的角的范圍.

  3.空間直線與平面

  直線與平面位置關(guān)系有且只有三種:

  (1)直線在平面內(nèi):有無(wú)數(shù)個(gè)公共點(diǎn);

  (2)直線與平面相交:有且只有一個(gè)公共點(diǎn);

  (3)直線與平面平行:沒有公共點(diǎn).

  4.平面與平面

  兩個(gè)平面之間的位置關(guān)系有且只有以下兩種:

  (1)兩個(gè)平面平行:沒有公共點(diǎn);

  (2)兩個(gè)平面相交:有一條公共直線.

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8

  一、平面解析幾何的基本思想和主要問(wèn)題

  平面解析幾何是用代數(shù)的方法研究幾何問(wèn)題的一門數(shù)學(xué)學(xué)科,其基本思想就是用代數(shù)的方法研究幾何問(wèn)題。例如,用直線的方程可以研究直線的性質(zhì),用兩條直線的方程可以研究這兩條直線的位置關(guān)系等。

  平面解析幾何研究的問(wèn)題主要有兩類:一是根據(jù)已知條件,求出表示平面曲線的方程;二是通過(guò)方程,研究平面曲線的性質(zhì)。

  二、直線坐標(biāo)系和直角坐標(biāo)系

  直線坐標(biāo)系,也就是數(shù)軸,它有三個(gè)要素:原點(diǎn)、度量單位和方向。如果讓一個(gè)實(shí)數(shù)與數(shù)軸上坐標(biāo)為的點(diǎn)對(duì)應(yīng),那么就可以在實(shí)數(shù)集與數(shù)軸上的點(diǎn)集之間建立一一對(duì)應(yīng)關(guān)系。

  點(diǎn)與實(shí)數(shù)對(duì)應(yīng),則稱點(diǎn)的坐標(biāo)為,記作,如點(diǎn)坐標(biāo)為,則記作;點(diǎn)坐標(biāo)為,則記為。

  直角坐標(biāo)系是由兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成,兩條數(shù)軸的.度量單位一般相同,但有時(shí)也可以不同,兩個(gè)數(shù)軸的交點(diǎn)是直角坐標(biāo)系的原點(diǎn)。在平面直角坐標(biāo)系中,有序?qū)崝?shù)對(duì)構(gòu)成的集合與坐標(biāo)平面內(nèi)的點(diǎn)集具有一一對(duì)應(yīng)關(guān)系。

  一個(gè)點(diǎn)的坐標(biāo)是這樣求得的,由點(diǎn)向軸及軸作垂線,在兩坐標(biāo)軸上形成正投影,在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的橫坐標(biāo),在軸上的正投影所對(duì)應(yīng)的值為點(diǎn)的縱坐標(biāo)。

  在學(xué)習(xí)這兩種坐標(biāo)系時(shí),要注意用類比的方法。例如,平面直角坐標(biāo)系是二維坐標(biāo)系,它有兩個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)需用兩個(gè)實(shí)數(shù)(即一對(duì)有序?qū)崝?shù))來(lái)表示,而直線坐標(biāo)系是一維坐標(biāo)系,它只有一個(gè)坐標(biāo)軸,每個(gè)點(diǎn)的坐標(biāo)只需用一個(gè)實(shí)數(shù)來(lái)表示。

  三、向量的有關(guān)概念和公式

  如果數(shù)軸上的任意一點(diǎn)沿著軸的正向或負(fù)向移動(dòng)到另一個(gè)點(diǎn),則說(shuō)點(diǎn)在軸上作了一次位移。位移是一個(gè)既有大小又有方向的量,通常叫做位移向量,簡(jiǎn)稱向量,記作。如果點(diǎn)移動(dòng)的方向與數(shù)軸的正方向相同,則向量為正,否則為負(fù)。線段的長(zhǎng)叫做向量的長(zhǎng)度,記作。向量的長(zhǎng)度連同表示其方向的正負(fù)號(hào)叫做向量的坐標(biāo)(或數(shù)量),用表示。這里同學(xué)們要分清,,三個(gè)符號(hào)的含義。

  對(duì)于數(shù)軸上任意三點(diǎn),都有成立。該等式左邊表示在數(shù)軸上點(diǎn)向點(diǎn)作一次位移,等式右邊表示點(diǎn)先向點(diǎn)作一次位移,再由點(diǎn)向點(diǎn)作一次位移,它們的最終結(jié)果是相同的。

  向量的坐標(biāo)公式(或數(shù)量公式),它表示向量的數(shù)量等于終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo),這個(gè)公式非常重要。

  有相等坐標(biāo)的兩個(gè)向量相等,看做同一個(gè)向量;反之,兩個(gè)相等向量坐標(biāo)必相等。

  注意:①相等的所有向量看做一個(gè)整體,作為同一向量,都等于以原點(diǎn)為起點(diǎn),坐標(biāo)與這所有向量相等的那個(gè)向量。②向量與數(shù)軸上的實(shí)數(shù)(或點(diǎn))是一一對(duì)應(yīng)的,零向量即原點(diǎn)。

  四、兩點(diǎn)的距離公式和中點(diǎn)公式

  1。對(duì)于數(shù)軸上的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則的距離為,的中點(diǎn)的坐標(biāo)為。

  由于表示數(shù)軸上兩點(diǎn)與的距離,所以在解一些簡(jiǎn)單的含絕對(duì)值的方程或不等式時(shí),常借助于數(shù)形結(jié)合思想,將問(wèn)題轉(zhuǎn)化為數(shù)軸上的距離問(wèn)題加以解決。例如,解方程時(shí),可以將問(wèn)題看作在數(shù)軸上求一點(diǎn),使它到,的距離之和等于。

  2。對(duì)于直角坐標(biāo)系中的兩點(diǎn),設(shè)它們的坐標(biāo)分別為,,則兩點(diǎn)的距離為,的中點(diǎn)的坐標(biāo)滿足。

  兩點(diǎn)的距離公式和中點(diǎn)公式是解析幾何中最基本、最常用的公式之一,要求同學(xué)們能熟練掌握并能靈活運(yùn)用。

  五、坐標(biāo)法

  坐標(biāo)法是數(shù)學(xué)中一種重要的數(shù)學(xué)思想方法,它是借助于坐標(biāo)系來(lái)研究幾何圖形的一種方法,是數(shù)形結(jié)合的典范。這種方法是在平面上建立直角坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿足某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)所滿足的方程表示曲線,通過(guò)研究方程,間接地來(lái)研究曲線的性質(zhì)。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無(wú)序性,

  3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

 、谡孀蛹:如果A?B,且A? B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 A?B, B?C ,那么 A?C

 、 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運(yùn)算

  運(yùn)算類型 交 集 并 集 補(bǔ) 集

  定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

  注意:

  1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

  求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)不小于零;

  (3)對(duì)數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數(shù)為零底不可以等于零,

  (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

  相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

  2.值域 : 先考慮其定義域

  (1)觀察法

  (2)配方法

  (3)代換法

  3. 函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 .

  (2) 畫法

  A、 描點(diǎn)法:

  B、 圖象變換法

  常用變換方法有三種

  1) 平移變換

  2) 伸縮變換

  3) 對(duì)稱變換

  4.區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

  (2)無(wú)窮區(qū)間

  (3)區(qū)間的數(shù)軸表示.

  5.映射

  一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

  6.分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補(bǔ)充:復(fù)合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。

  二.函數(shù)的'性質(zhì)

  1.函數(shù)的單調(diào)性(局部性質(zhì))

  (1)增函數(shù)

  設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

  如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

  注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

  (2) 圖象的特點(diǎn)

  如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A) 定義法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 變形(通常是因式分解和配方);

  ○4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

  ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

  (B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8.函數(shù)的奇偶性(整體性質(zhì))

  (1)偶函數(shù)

  一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2).奇函數(shù)

  一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  (3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

  利用定義判斷函數(shù)奇偶性的步驟:

  ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;

  (3)利用定理,或借助函數(shù)的圖象判定 .

  9、函數(shù)的解析表達(dá)式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

  (2)求函數(shù)的解析式的主要方法有:

  1) 湊配法

  2) 待定系數(shù)法

  3) 換元法

  4) 消參法

  10.函數(shù)最大(小)值(定義見課本p36頁(yè))

  ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

  ○2 利用圖象求函數(shù)的最大(小)值

  ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10

  【(一)、映射、函數(shù)、反函數(shù)】

  1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射.

  2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):

  (1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù).

  (2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù).

  3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:

  (1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f-1(x),并注明定義域.

  注意①:對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起.

 、谑煜さ膽(yīng)用,求f-1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過(guò)程,從而簡(jiǎn)化運(yùn)算.

  【(二)、函數(shù)的解析式與定義域】

  1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域.求函數(shù)的定義域一般有三種類型:

  (1)有時(shí)一個(gè)函數(shù)來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;

  (2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可.如:

 、俜质降姆帜覆坏脼榱;

 、谂即畏礁谋婚_方數(shù)不小于零;

 、蹖(duì)數(shù)函數(shù)的真數(shù)必須大于零;

 、苤笖(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

 、萑呛瘮(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等.

  應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集).

  (3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可.

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域.

  2、求函數(shù)的解析式一般有四種情況

  (1)根據(jù)某實(shí)際問(wèn)題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式.

  (2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法.比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.

  (3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.

  (4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(-x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式.

  【(三)、函數(shù)的值域與最值】

  1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

  (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.

  (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

  (4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

  (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異.

  如函數(shù)的值域是(0,16],值是16,無(wú)最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無(wú)值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.

  3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用

  函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)”或“面積(體積)(最小)”等諸多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值.

  【(四)、函數(shù)的奇偶性】

  1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).

  正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.(奇偶性是函數(shù)定義域上的整體性質(zhì)).

  2、奇偶函數(shù)的`定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式:

  注意如下結(jié)論的運(yùn)用:

  (1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);

  (2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

  (3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);

  (4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。

  3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論

  (1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱.

  (2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù).

  (3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立.

  (4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。

  (5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則F(x)=f(x)+f(-x)是偶函數(shù),G(x)=f(x)-f(-x)是奇函數(shù).

  (6)奇偶性的推廣

  函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù).函數(shù)y=f(x)對(duì)定義域內(nèi)的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù)。

  【(五)、函數(shù)的單調(diào)性】

  1、單調(diào)函數(shù)

  對(duì)于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點(diǎn)x1,x2,當(dāng)x1>x2時(shí),都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù).

  對(duì)于函數(shù)單調(diào)性的定義的理解,要注意以下三點(diǎn):

  (1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念.一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性.

  (2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.

  (3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi).

  (4)注意定義的兩種等價(jià)形式:

  設(shè)x1、x2∈[a,b],那么:

 、僭赱a、b]上是增函數(shù);

  在[a、b]上是減函數(shù).

 、谠赱a、b]上是增函數(shù).

  在[a、b]上是減函數(shù).

  需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零.

  (5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說(shuō)明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”.

  5、復(fù)合函數(shù)y=f[g(x)]的單調(diào)性

  若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復(fù)合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減.簡(jiǎn)稱“同增、異減”.

  在研究函數(shù)的單調(diào)性時(shí),常需要先將函數(shù)化簡(jiǎn),轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過(guò)程.

  6、證明函數(shù)的單調(diào)性的方法

  (1)依定義進(jìn)行證明.其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據(jù)定義,得出結(jié)論.

  (2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導(dǎo).

  如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù).

  【(六)、函數(shù)的圖象】

  函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強(qiáng)對(duì)作圖、識(shí)圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問(wèn)題的意識(shí).

  求作圖象的函數(shù)表達(dá)式

  與f(x)的關(guān)系

  由f(x)的圖象需經(jīng)過(guò)的變換

  y=f(x)±b(b>0)

  沿y軸向平移b個(gè)單位

  y=f(x±a)(a>0)

  沿x軸向平移a個(gè)單位

  y=-f(x)

  作關(guān)于x軸的對(duì)稱圖形

  y=f(|x|)

  右不動(dòng)、左右關(guān)于y軸對(duì)稱

  y=|f(x)|

  上不動(dòng)、下沿x軸翻折

  y=f-1(x)

  作關(guān)于直線y=x的對(duì)稱圖形

  y=f(ax)(a>0)

  橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)不變

  y=af(x)

  縱坐標(biāo)伸長(zhǎng)到原來(lái)的|a|倍,橫坐標(biāo)不變

  y=f(-x)

  作關(guān)于y軸對(duì)稱的圖形

  【例】定義在實(shí)數(shù)集上的函數(shù)f(x),對(duì)任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

 、偾笞C:f(0)=1;

 、谇笞C:y=f(x)是偶函數(shù);

  ③若存在常數(shù)c,使求證對(duì)任意x∈R,有f(x+c)=-f(x)成立;試問(wèn)函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個(gè)周期;如果不是,請(qǐng)說(shuō)明理由.

  思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問(wèn)題一般采用賦值法.

  解答:①令x=y=0,則有2f(0)=2f2(0),因?yàn)閒(0)≠0,所以f(0)=1.

 、诹顇=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說(shuō)明f(x)為偶函數(shù).

  ③分別用(c>0)替換x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=-f(x).

  兩邊應(yīng)用中的結(jié)論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

  所以f(x)是周期函數(shù),2c就是它的一個(gè)周期.

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11

  集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

  A?① 任何一個(gè)集合是它本身的.子集。A

  B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

  C?C ,那么 A?B, B?③如果 A

  A 那么A=B?B 同時(shí) B?④ 如果A

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補(bǔ)集

  (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  A}?S且 x? x?記作: CSA 即 CSA ={x

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性;2.元素的互異性;3.元素的無(wú)序性

  說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

  3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法。

  二、集合間的'基本關(guān)系

  1.“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同”

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

 、偃魏我粋(gè)集合是它本身的子集。AíA

 、谡孀蛹:如果AíB,且A1B那就說(shuō)集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

 、苋绻鸄íB同時(shí)BíA那么A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  三、集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13

  一、函數(shù)的概念與表示

  1、映射

  (1)映射:設(shè)A、B是兩個(gè)集合,如果按照某種映射法則f,對(duì)于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對(duì)應(yīng),則這樣的對(duì)應(yīng)(包括集合A、B以及A到B的對(duì)應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

  注意點(diǎn):(1)對(duì)映射定義的理解。(2)判斷一個(gè)對(duì)應(yīng)是映射的方法。一對(duì)多不是映射,多對(duì)一是映射

  2、函數(shù)

  構(gòu)成函數(shù)概念的三要素

 、俣x域②對(duì)應(yīng)法則③值域

  兩個(gè)函數(shù)是同一個(gè)函數(shù)的條件:三要素有兩個(gè)相同

  二、函數(shù)的解析式與定義域

  1、求函數(shù)定義域的主要依據(jù):

  (1)分式的分母不為零;

  (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

  (3)對(duì)數(shù)函數(shù)的真數(shù)必須大于零;

  (4)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

  三、函數(shù)的值域

  1求函數(shù)值域的方法

 、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的`取值范圍,適合于簡(jiǎn)單的復(fù)合函數(shù);

 、趽Q元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

 、叟袆e式法:運(yùn)用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

 、芊蛛x常數(shù):適合分子分母皆為一次式(x有范圍限制時(shí)要畫圖);

 、輪握{(diào)性法:利用函數(shù)的單調(diào)性求值域;

 、迗D象法:二次函數(shù)必畫草圖求其值域;

 、呃脤(duì)號(hào)函數(shù)

 、鄮缀我饬x法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對(duì)值函數(shù)

  四.函數(shù)的奇偶性

  1.定義:設(shè)y=f(x),x∈A,如果對(duì)于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

  如果對(duì)于任意∈A,都有,則稱y=f(x)為奇

  函數(shù)。

  2.性質(zhì):

  ①y=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對(duì)稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,

 、谌艉瘮(shù)f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則f(0)=0

 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對(duì)稱]

  3.奇偶性的判斷

  ①看定義域是否關(guān)于原點(diǎn)對(duì)稱②看f(x)與f(-x)的關(guān)系

  五、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義:

  2設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14

  一、直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180

  (2)直線的斜率

 、俣x:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

  ②過(guò)兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):

  (1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90

  (2)k與P1、P2的順序無(wú)關(guān);

  (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  (3)直線方程

 、冱c(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)

  注意:當(dāng)直線的斜率為0時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90時(shí),直線的斜率不存在,它的.方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

 、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c(diǎn)式:()直線兩點(diǎn),

 、芙鼐厥剑浩渲兄本與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

  ⑤一般式:(A,B不全為0)

  ⑤一般式:(A,B不全為0)

  注意:○1各式的適用范圍

  ○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (4)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)過(guò)定點(diǎn)的直線系

  (ⅰ)斜率為k的直線系:直線過(guò)定點(diǎn);

  (ⅱ)過(guò)兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。

  (5)兩直線平行與垂直;

  注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

  (6)兩條直線的交點(diǎn)

  相交:交點(diǎn)坐標(biāo)即方程組的一組解。方程組無(wú)解;方程組有無(wú)數(shù)解與重合

  (7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

  (8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離

  (9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15

  函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.

  (2)畫法

  A、描點(diǎn)法:

  B、圖象變換法

  常用變換方法有三種

  1)平移變換

  2)伸縮變換

  3)對(duì)稱變換

  4.高中數(shù)學(xué)函數(shù)區(qū)間的概念

  (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

  (2)無(wú)窮區(qū)間

  5.映射

  一般地,設(shè)A、B是兩個(gè)非空的函數(shù),如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于函數(shù)A中的任意一個(gè)元素x,在函數(shù)B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從函數(shù)A到函數(shù)B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)”

  對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足:

  (1)函數(shù)A中的.每一個(gè)元素,在函數(shù)B中都有象,并且象是的;

  (2)函數(shù)A中不同的元素,在函數(shù)B中對(duì)應(yīng)的象可以是同一個(gè);

  (3)不要求函數(shù)B中的每一個(gè)元素在函數(shù)A中都有原象。

  6.高中數(shù)學(xué)函數(shù)之分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補(bǔ)充:復(fù)合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。

【高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高一數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)12-01

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-19

高一數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)07-05

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-09

高一數(shù)學(xué)易錯(cuò)知識(shí)點(diǎn)總結(jié)11-23

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納09-08

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)范文12-06

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇11-28

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)精選15篇09-29

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納10-09