新人教版初中數學知識點總結
總結是事后對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,寫總結有利于我們學習和工作能力的提高,不如立即行動起來寫一份總結吧?偨Y怎么寫才不會流于形式呢?下面是小編精心整理的新人教版初中數學知識點總結,希望對大家有所幫助。
初中數學知識點總結 篇1
1.圓是以圓心為對稱中心的中心對稱圖形;同圓或等圓的半徑相等。
2.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
3.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
4.圓是定點的距離等于定長的點的集合。
5.圓的內部可以看作是圓心的距離小于半徑的點的集合;圓的外部可以看作是圓心的距離大于半徑的點的集合。
6.不在同一直線上的三點確定一個圓。
7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
推論1:
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧;
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧;
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2:
圓的兩條平行弦所夾的弧相等。
8.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
9.定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角。
10.經過切點且垂直于切線的直線必經過圓心。
11.切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線。
12.切線的性質定理圓的切線垂直于經過切點的半徑。
13.經過圓心且垂直于切線的直線必經過切點
14.切線長定理從圓外一點引圓的兩條切線,它們的'切線長相等,圓心和這一點的連線平分兩條切線的夾角。
15.圓的外切四邊形的兩組對邊的和相等外角等于內對角。
16.如果兩個圓相切,那么切點一定在連心線上。
17.
①兩圓外離d>R+r
、趦蓤A外切d=R+r
③兩圓相交d>R-r)
、軆蓤A內切d=R-r(R>r)
⑤兩圓內含d=r)
18.定理把圓分成n(n≥3):
、乓来芜B結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。
19.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓。
20.弧長計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。
21.內公切線長= d-(R-r)外公切線長= d-(R+r)。
22.定理一條弧所對的圓周角等于它所對的圓心角的一半。
23.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
24.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
初中數學知識點總結 篇2
一、數與代數
a、數與式:
1、有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數軸。
、谌魏我粋有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個數所對應的點與原點的距離叫做該數的絕對值。
、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:加法:
、偻栂嗉,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋數與0相加不變。
減法:減去一個數,等于加上這個數的相反數。
乘法:
、賰蓴迪喑,同號得正,異號得負,絕對值相乘。
②任何數與0相乘得0。
、鄢朔e為1的兩個有理數互為倒數。
除法:
①除以一個數等于乘以一個數的倒數。
、0不能作除數。
乘方:求n個相同因數a的積的運算叫做乘方,乘方的結果叫冪,a叫底數,n叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數 無理數:無限不循環(huán)小數叫無理數
平方根:
①如果一個正數x的平方等于a,那么這個正數x就叫做a的算術平方根。
②如果一個數x的平方等于a,那么這個數x就叫做a的平方根。
③一個正數有2個平方根/0的平方根為0/負數沒有平方根。
、芮笠粋數a的平方根運算,叫做開平方,其中a叫做被開方數。
立方根:
①如果一個數x的立方等于a,那么這個數x就叫做a的立方根。
、谡龜档牧⒎礁钦龜怠0的立方根是0、負數的立方根是負數。
、矍笠粋數a的立方根的運算叫開立方,其中a叫做被開方數。
實數:
、賹崝捣钟欣頂岛蜔o理數。
②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
、勖恳粋實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合并同類項:
①所含字母相同,并且相同字母的指數也相同的項,叫做同類項。
②把同類項合并成一項就叫做合并同類項。
、墼诤喜⑼愴棔r,我們把同類項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
、谝粋單項式中,所有字母的指數和叫做這個單項式的次數。
③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn 除法一樣。
整式的乘法:
①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的.積相加。
、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
①整式a除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。
初中數學知識點:直線的位置與常數的關系
、賙>0則直線的傾斜角為銳角
、趉<0則直線的傾斜角為鈍角
、蹐D像越陡,|k|越大
④b>0直線與y軸的交點在x軸的上方
、輇<0直線與y軸的交點在x軸的下方
初中數學知識點總結 篇3
一、函數及其相關概念
1、變量與常量
在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有確定的值與它對應,那么就說x是自變量,y是x的函數。
2、函數解析式
用來表示函數關系的數學式子叫做函數解析式或函數關系式。
使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數關系的方法叫做圖像法。
4、由函數解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
二、相交線與平行線
1、知識網絡結構
2、知識要點
。1)在同一平面內,兩條直線的位置關系有兩種:相交和平行,垂直是相交的一種特殊情況。
。2)在同一平面內,不相交的兩條直線叫平行線。如果兩條直線只有一個公共點,稱這兩條直線相交;如果兩條直線沒有公共點,稱這兩條直線平行。
。3)兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是
鄰補角。鄰補角的`性質:鄰補角互補。如圖1所示,與互為鄰補角,
與互為鄰補角。+=180°;+=180°;+=180°;+=180°。
3、兩條直線相交所構成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質:對頂角相等。如圖1所示,與互為對頂角。=; =。
4、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當=90°時,⊥。
垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
性質3:如圖2所示,當a⊥b時,====90°。
點到直線的距離:直線外一點到這條直線的垂線段的長度叫點到直線的距離。
5、同位角、內錯角、同旁內角基本特征:
在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側,這樣的兩個角叫同位角。圖3中,共有對同位角:與是同位角;與是同位角;與是同位角;與是同位角。
在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側,這樣的兩個角叫內錯角。圖3中,共有對內錯角:與是內錯角;與是內錯角。
在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內角。圖3中,共有對同旁內角:與是同旁內角;與是同旁內角。
三、實數
1、實數的分類
(1)按定義分類:
。2)按性質符號分類:
注:0既不是正數也不是負數.
2、實數的相關概念
。1)相反數
、俅鷶狄饬x:只有符號不同的兩個數,我們說其中一個是另一個的相反數.0的相反數是0.
②幾何意義:在數軸上原點的兩側,與原點距離相等的兩個點表示的兩個數互為相反數,或數軸上,互為相反數的兩個數所對應的點關于原點對稱.
、刍橄喾磾档膬蓚數之和等于0.a、b互為相反數a+b=0.
。2)絕對值|a|≥0.
(3)倒數(1)0沒有倒數(2)乘積是1的兩個數互為倒數.a、b互為倒數.
。4)平方根
①如果一個數的平方等于a,這個數就叫做a的平方根.一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根.a(a≥0)的平方根記作.
、谝粋正數a的正的平方根,叫做a的算術平方根.a(a≥0)的算術平方根記作.
。5)立方根
如果x3=a,那么x叫做a的立方根.一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零.
3、實數與數軸
數軸定義:規(guī)定了原點,正方向和單位長度的直線叫做數軸,數軸的三要素缺一不可.
4、實數大小的比較
。1)對于數軸上的任意兩個點,靠右邊的點所表示的數較大.
。2)正數都大于0,負數都小于0,兩個正數,絕對值較大的那個正數大;兩個負數;絕對值大的反而小.
。3)無理數的比較大小:
初中數學知識點總結 篇4
初中數學知識點總結:中位線
知識要點:梯形的中位線平行于兩底,并且等于兩底和的一半。
1.中位線概念
(1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。
(2)梯形中位線定義:連結梯形兩腰中點的線段叫做梯形的中位線。
注意:
(1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結一頂點和它對邊的中點,而三角形中位線是連結三角形兩邊中點的線段。
(2)梯形的中位線是連結兩腰中點的線段而不是連結兩底中點的線段。
(3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。
2.中位線定理
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
三角形兩邊中點的連線(中位線)平行于第BC邊,且等于第三邊的一半。
知識要領總結:三角形的中位線所構成的小三角形(中點三角形)面積是原三角形面積的四分之一。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數學知識點:因式分解的.一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:
把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
③結果是等式
、芤蚴椒纸馀c整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂凳钦麛禃r取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
、巯禂底畲蠊s數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
②不準丟常數項注意查項數
、垭p重括號化成單括號
④結果按數單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
⑦括號內同類項合并。
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
初中數學知識點總結 篇5
動點與函數圖象問題常見的四種類型:
1、三角形中的動點問題:動點沿三角形的邊運動,根據問題中的常量與變量之間的關系,判斷函數圖象.
2、四邊形中的動點問題:動點沿四邊形的邊運動,根據問題中的常量與變量之間的關系,判斷函數圖象.
3、圓中的動點問題:動點沿圓周運動,根據問題中的常量與變量之間的關系,判斷函數圖象.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據問題中的常量與變量之間的關系,判斷函數圖象.
圖形運動與函數圖象問題常見的三種類型:
1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經過三角形或四邊形,根據問題中的常量與變量之間的關系,進行分段,判斷函數圖象.
2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經過另一個多邊形,根據問題中的常量與變量之間的關系,進行分段,判斷函數圖象.
3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經過一個圓,根據問題中的常量與變量之間的關系,進行分段,判斷函數圖象.
動點問題常見的四種類型:
1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構成的新圖形與原圖形的邊或角的關系.
2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關系.
3、圓中的動點問題:動點沿圓周運動,探究構成的新圖形的邊角等關系.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構成的三角形是等腰三角形或與已知圖形相似等問題.
總結反思:
本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的'解析式,三角形全等的判定和性質,等腰直角三角形的性質,平行線的性質等,數形結合思想的應用是解題的關鍵.
解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發(fā)掘“動”與“靜”的內在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達到解題目的.
解答函數的圖象問題一般遵循的步驟:
1、根據自變量的取值范圍對函數進行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
對于用圖象描述分段函數的實際問題,要抓住以下幾點:
1、自變量變化而函數值不變化的圖象用水平線段表示.
2、自變量變化函數值也變化的增減變化情況.
3、函數圖象的最低點和最高點.
初中數學知識點總結 篇6
相關的角:
1、對頂角:一個角的兩邊分別是另一個角的兩邊的`反向延長線,這兩個角叫做對頂角。
2、互為補角:如果兩個角的和是一個平角,這兩個角做互為補角。
3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。
4、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數量關系,與兩個角的位置無關,而互為鄰補角則要求兩個角有特殊的位置關系。
角的性質
1、對頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補角相等。
初中數學知識點總結 篇7
第二章整式的加減
2、1整式
1、單項式:由數字和字母乘積組成的式子。系數,單項式的次數、單項式指的是數或字母的積的代數式、單獨一個數或一個字母也是單項式、因此,判斷代數式是否是單項式,關鍵要看代數式中數與字母是否是乘積關系,即分母中不含有字母,若式子中含有加、減運算關系,其也不是單項式、
2、單項式的系數:是指單項式中的數字因數;
3、單項數的次數:是指單項式中所有字母的指數的和、
4、多項式:幾個單項式的和。判斷代數式是否是多項式,關鍵要看代數式中的每一項是否是單項式、每個單項式稱項,常數項,多項式的次數就是多項式中次數的次數。多項式的次數是指多項式里次數項的次數,這里是次數項,其次數是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質符號、
5、它們都是用字母表示數或列式表示數量關系。注意單項式和多項式的'每一項都包括它前面的符號。
6、單項式和多項式統(tǒng)稱為整式。
2、2整式的加減
1、同類項:所含字母相同,并且相同字母的指數也相同的項。與字母前面的系數(≠0)無關。
2、同類項必須同時滿足兩個條件:
。1)所含字母相同;
。2)相同字母的次數相同,二者缺一不可、同類項與系數大小、字母的排列順序無關
3、合并同類項:把多項式中的同類項合并成一項?梢赃\用交換律,結合律和分配律。
4、合并同類項法則:合并同類項后,所得項的系數是合并前各同類項的系數的和,且字母部分不變;
5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。
6、整式加減的一般步驟:
一去、二找、三合
。1)如果遇到括號按去括號法則先去括號
(2)結合同類項
。3)合并同類項葫蘆島
初中數學知識點總結 篇8
一、角的定義
“靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。
“動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉到另一個位置所形成的圖形。
如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補角的概念和性質:
概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。
如果兩個角的和是一個直角,那么這兩個角叫做互為余角。
說明:互補、互余是指兩個角的數量關系,沒有位置關系。
性質:同角(或等角)的余角相等;
同角(或等角)的補角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的`平分線。
常見考法
(1)考查與時鐘有關的問題;(2)角的計算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。
【典型例題】(20xx云南曲靖)從3時到6時,鐘表的時針旋轉角的度數是( )
【答案】3時到6時,時針旋轉的是一個周角的1/4,故是90度 ,本題選C.
初中數學知識點總結 篇9
一元一次方程定義
通過化簡,只含有一個未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。
一元指方程僅含有一個未知數,一次指未知數的次數為1,且未知數的系數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,并且a≠0)叫一元一次方程的標準形式。這里a是未知數的系數,b是常數,x的次數必須是1。
即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的系數不為0。
一元一次方程的五個核心問題
一、什么是等式?1+1=1是等式嗎?
表示相等關系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數值代替等式中的.字母,等式的兩邊總是相等,由數字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。
一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。
等式與代數式不同,等式中含有等號,代數式中不含等號。
等式有兩個重要性質1)等式的兩邊都加上或減去同一個數或同一個整式,所得結果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數除數不為零,所得結果仍然是一個等式。
二、什么是方程,什么是一元一次方程?
含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數,兩者缺一不可。
只含有一個未知數,并且含未知數的式子都是整式,未知數的次數是1,系數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。
凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。
三、等式有什么牛掰的基本性質嗎?
將方程中的某些項改變符號后,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質1。
移項時不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會顯得簡便些。
去分母,將未知數的系數化為1,則是依據等式的基本性質2進行的。
四、等式一定是方程嗎?方程一定是等式嗎?
等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數式,但它們還是有區(qū)別的。方程僅是含有未知數的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。
五、"解方程"與"方程的解"是一回事兒嗎?
方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。
初中數學知識點總結 篇10
一、圓
1、圓的有關性質
在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等于定長的點都在圓上。
就是說:圓是到定點的距離等于定長的點的集合,圓的內部可以看作是到圓。心的距離小于半徑的點的集合。
圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結圓上任意兩點的`線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個點確定一個圓。
經過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內接三角形。
2、反證法
反證法的三個步驟:
、偌僭O命題的結論不成立;
、趶倪@個假設出發(fā),經過推理論證,得出矛盾;
③由矛盾得出假設不正確,從而肯定命題的結論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設有兩個以上是鈍角
則兩個鈍角之和>180°
與三角形內角和等于180°矛盾。
∴不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關系
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。
五、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構成直徑上的圓周角的輔助線。
初中數學知識點總結 篇11
一、平移變換:
1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2。性質:(1)平移前后圖形全等;
。2)對應點連線平行或在同一直線上且相等。
3。平移的作圖步驟和方法:
(1)分清題目要求,確定平移的方向和平移的距離;
。2)分析所作的圖形,找出構成圖形的關健點;
。3)沿一定的方向,按一定的距離平移各個關健點;
。4)連接所作的各個關鍵點,并標上相應的字母;
(5)寫出結論。
二、旋轉變換:
1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
說明:
。1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;
。2)旋轉過程中旋轉中心始終保持不動。
。3)旋轉過程中旋轉的方向是相同的。
。4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的.大小和形狀。
2。性質:
。1)對應點到旋轉中心的距離相等;
(2)對應點與旋轉中心所連線段的夾角等于旋轉角;
。3)旋轉前、后的圖形全等。
3。旋轉作圖的步驟和方法:
。1)確定旋轉中心及旋轉方向、旋轉角;
(2)找出圖形的關鍵點;
。3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;
。4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。
說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。
常見考法
。1)把平移旋轉結合起來證明三角形全等;
。2)利用平移變換與旋轉變換的性質,設計一些題目。
誤區(qū)提醒
。1)弄反了坐標平移的上加下減,左減右加的規(guī)律;
。2)平移與旋轉的性質沒有掌握。
初中數學知識點總結 篇12
誘導公式的本質
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函數值與的三角函數值之間的'關系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數值之間的關系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數學知識點總結 篇13
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質:⑴矩形具有平行四邊形的一切性質;
、屏庑蔚乃臈l邊都相等;
⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
、攘庑问禽S對稱圖形。
提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。
3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
4、因式分解要素:
、俳Y果必須是整式
、诮Y果必須是積的形式
③結果是等式
、芤蚴椒纸馀c整式乘法的關系:m(a+b+c)
5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
6、公因式確定方法:
、傧禂凳钦麛禃r取各項最大公約數。
、谙嗤帜溉∽畹痛蝺
③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
7、提取公因式步驟:
①確定公因式。
②確定商式
、酃蚴脚c商式寫成積的'形式。
8、平方根表示法:一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。
9、中被開方數的取值范圍:被開方數a≥0
10、平方根性質:
、僖粋正數的平方根有兩個,它們互為相反數。
②0的平方根是它本身0。
、圬摂禌]有平方根開平方;求一個數的平方根的運算,叫做開平方。
11、平方根與算術平方根區(qū)別:定義不同、表示方法不同、個數不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0
13、含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。
14、求正數a的算術平方根的方法;
完全平方數類型:
、傧胝l的平方是數a。
、谒詀的平方根是多少。
、塾檬阶颖硎。
求正數a的算術平方根,只需找出平方后等于a的正數。
初中數學知識點總結 篇14
1、重心的定義:平面圖形中,幾何圖形的重心是當支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。
2、幾種幾何圖形的重心:
、 線段的重心就是線段的中點;
⑵ 平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;
、 三角形的三條中線交于一點,這一點就是三角形的重心;
⑷ 任意多邊形都有重心,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。
提示:⑴ 無論幾何圖形的形狀如何,重心都有且只有一個;
、 從物理學角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的`力矩相同。
3、常見圖形重心的性質:
、 線段的重心把線段分為兩等份;
、 平行四邊形的重心把對角線分為兩等份;
⑶ 三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。
上面對重心知識點的鞏固學習,同學們都能熟練的掌握了吧,希望同學們很好的復習學習數學知識。
初中數學知識點總結 篇15
1.有理數:
(1)凡能寫成形式的數,都是有理數。正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;
。2)有理數的分類:① ②
2.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線。
3.相反數:
。1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0?a+b=0?a、b互為相反數。
4.絕對值:
。1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
。2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:
。1)正數的絕對值越大,這個數越大;
(2)正數永遠比0大,負數永遠比0;
。3)正數大于一切負數;
。4)兩個負數比大小,絕對值大的反而。
(5)數軸上的兩個數,右邊的數總比左邊的數大;
。6)大數—小數> 0,小數—大數< 0。
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。
7.有理數加法法則:
。1)同號兩數相加,取相同的符號,并把絕對值相加;
。2)異號兩數相加,取絕對值較大的'符號,并用較大的絕對值減去較小的絕對值;
。3)一個數與0相加,仍得這個數。
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。
9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a—b=a+(—b)。
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
。2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
。3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,。
13.有理數乘方的法則:
。1)正數的任何次冪都是正數;
。2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數時:(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
。2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運算法則:先乘方,后乘除,最后加減。
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題。
體驗數學發(fā)展的一個重要原因是生活實際的需要。激發(fā)學生學習數學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創(chuàng)設情境,充分體現學生學習的主體性地位。
初中數學知識點總結 篇16
直線、射線、線段
(1)直線、射線、線段的表示方法
①直線:用一個小寫字母表示,如:直線l,或用兩個大寫字母(直線上的)表示,如直線AB。
②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA。注意:用兩個字母表示時,端點的字母放在前邊。
③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段AB(或線段BA)。
。2)點與直線的位置關系:
、冱c經過直線,說明點在直線上;
②點不經過直線,說明點在直線外。
兩點間的.距離
。1)兩點間的距離:連接兩點間的線段的長度叫兩點間的距離。
。2)平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最后的兩個字“長度”,也就是說,它是一個量,有大小,區(qū)別于線段,線段是圖形。線段的長度才是兩點的距離?梢哉f畫線段,但不能說畫距離。
正方體
(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象。
。2)從實物出發(fā),結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵。
。3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面。
初中數學知識點總結 篇17
一、一次函數圖象 y=kx+b
一次函數的圖象可以由k、b的正負來決定:
k大于零是一撇(由左下至右上,增函數)
k小于零是一捺(由右上至左下,減函數)
b等于零必過原點;
b大于零交點(指圖象與y軸的交點)在上方(指x軸上方)
b小于零交點(指圖象與y軸的交點)在下方(指x軸下方)
其圖象經過(0,b) 和 (-b/k , 0) 這兩點(兩點就可以決定一條直線),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。
b的數值就是一次函數在y軸上的截距(不是距離,有正、負、零之分)。
二、不等式組的.解集
1、步驟:去分母(后分子應加上括號)、去括號、移項、合并同類項、系數化為1 。
2、解一元一次不等式組時,先求出各個不等式的解集,然后按不等式組解集的四種類型所反映的規(guī)律,寫出不等式組的解集:不等式組解集的確定方法,若a
A 的解集是 解集 小小的取小
B 的解集是 解集 大大的取大
C 的解集是 解集 大小的 小大的取中間
D 的解集是空集 解集 大大的 小小的無解
另需注意等于的問題。
初中數學知識點總結 篇18
圓周角知識點
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。
3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構成直角,有900圓周角可構成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)
4、圓內接四邊形的性質定理:圓內接四邊形的對角互補。(任意一個外角等于它的內對角)
補充:1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數差的一半。2)在圓內相交時,所夾的`角等于它所夾兩條弧度數和的一半。
3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。
平均數中位數與眾數知識點
1.數據13,10,12,8,7的平均數是10.
2.數據3,4,2,4,4的眾數是4.
3.數據1,2,3,4,5的中位數是3.
有理數知識點
1.大于0的數叫做正數。
2.在正數前面加上負號“-”的數叫做負數。
3.整數和分數統(tǒng)稱為有理數。
4.人們通常用一條直線上的點表示數,這條直線叫做數軸。
5.在直線上任取一個點表示數0,這個點叫做原點。
6.一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。
7.由絕對值的定義可知:
一個正數的絕對值是它本身;
一個負數的絕對值是它的相反數;
0的絕對值是0。
8.正數大于0,0大于負數,正數大于負數。
9.兩個負數,絕對值大的反而小。
10.有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11.有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12.有理數的加法中,三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。
13.有理數減法法則:減去一個數,等于加上這個數的相反數。
14.有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值向乘。任何數同0相乘,都得0。
15.有理數中仍然有:乘積是1的兩個數互為倒數。
16.一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17.三個數相乘,先把前兩個數相乘,或者先把后兩個數相乘,積相等。
18.一般地,一個數同兩個數的和相乘,等于把這個數分別同這兩個數相乘,再把積相加。
19.有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
20.兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。
【初中數學知識點總結】相關文章:
初中數學的知識點總結12-12
初中數學極差知識點總結07-19
初中數學圓知識點總結04-30
初中數學知識點總結07-14
人教版初中數學知識點總結07-21
初中數學所有函數的知識點總結11-22
初中數學幾何知識點總結范文12-13
初中數學知識點總結優(yōu)秀02-24
初中數學知識點點和面的知識點總結04-23
有關初中數學圓的知識點總結歸納04-20