分數(shù)的基本性質(zhì)教學設計
作為一名無私奉獻的老師,常常要根據(jù)教學需要編寫教學設計,教學設計是根據(jù)課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。我們該怎么去寫教學設計呢?下面是小編為大家收集的分數(shù)的基本性質(zhì)教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。
分數(shù)的基本性質(zhì)教學設計1
教學目的:
1、理解分數(shù)的基本性質(zhì);
2、初步掌握分數(shù)性質(zhì)的應用;
3、培養(yǎng)學生觀察——探索——抽象——概括的能力;
4、滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點。
教學重點:
從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。
教學難點:
形成對分數(shù)的基本性質(zhì)的統(tǒng)一認知。
教學準備:
多媒體,自制演示教具。
教學過程:
一、激趣引新:
1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的.笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節(jié)課我們就來解決這個問題。
2、在下面的()中填上合適的數(shù)。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同學們現(xiàn)在已經(jīng)能用分數(shù)的知識來解決問題了。
二、啟發(fā)引導,探索新知。
1、下面是六年級三個班的同學到三塊同樣大小面積的正方形地里去種樹,哪個班種植的面積大一些呢?
通過圖形的平移、旋轉(zhuǎn)等方法看出三個班種植面積一樣大。
2.引導觀察得出結(jié)論。
。1)通過拼圖得到1/2=2/4=4/8
(2)引導觀察、比較,提出問題:分子,分母都不相同,它們的大小為什么相同呢?
。3)引導思考探索變化規(guī)律:
從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同討論,引導學生抽象概括出分數(shù)的基本性質(zhì):
。1)怎么做能使分數(shù)的分子和分母發(fā)生變化,而分數(shù)的大小都不變呢?
。2)變化時同時乘或除以小數(shù)可以嗎?
。3)0可以嗎?3/4=3×0/4×0=?(分數(shù)的分母不能為0,在除法里0不能作除數(shù),分子和分母都乘或除以相同的數(shù),這個數(shù)不能是0。)
歸納分數(shù)基本性質(zhì):分數(shù)的分子和分母都乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
4.學習分數(shù)的基本性質(zhì)以后,感覺過去我們學過類似的性質(zhì)是什么呢?(商不變的性質(zhì))
。1)練習在□中填上合適的數(shù)
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
。2)你能把1÷2這個除法算式改寫成分數(shù)形式?
你能用今天所學的知識解決老爺爺分地的問題嗎?(學生交流、匯報)
5.組織練習
(1)判斷:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。()
(2)畫一畫、填一填
。3)填空
1/2=1×()/2×()=6/()
10/24=10()/24()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少種填法)
6.通過練習在此性質(zhì)中哪些是關鍵詞?
7.鞏固練習(選擇你喜歡的一題來做)
。1)與1/2相等的分數(shù)有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數(shù)?
(2)9/24和20/32哪一個數(shù)大一些,你能講出判斷的依據(jù)嗎?
三、課堂總結(jié)
今天這節(jié)課同學們學了分數(shù)的基本性質(zhì),有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學們把今天所學的知識運用到今后的學習和生活中去,做一個生活的有心人。
四、課堂作業(yè):練習十四第1——3題。
板書設計:
分數(shù)的基本性質(zhì)
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分數(shù)的分子和分母同時乘以一個不為0的數(shù)分數(shù)的大小不變
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分數(shù)的分子和分母同時除以一個不為0的數(shù)分數(shù)的大小不變
綜上所述分數(shù)的基本性質(zhì)是:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)的基本性質(zhì)教學設計2
一、教學目標
1、使學生理解和掌握分數(shù)的基本性質(zhì),能應用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母而大小不變的分數(shù)。
2、學生通過觀察、比較、發(fā)現(xiàn)、歸納、應用等過程,經(jīng)歷探究分數(shù)的基本性質(zhì)的過程,初步學習歸納概括的方法。
3、激發(fā)學生積極主動的情感狀態(tài),體驗互相合作的樂趣。
二、教學重點
1、理解、掌握分數(shù)的基本性質(zhì),能正確應用分數(shù)的基本性質(zhì)。
2、自主探究出分數(shù)的基本性質(zhì)。
三、教學準備
課件、正方形的紙
四、教學設計過程
。ㄒ唬┻w移舊知.提出猜想
1、回憶舊知
根據(jù)“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除數(shù)÷除數(shù)=()
說一說你是根據(jù)什么算的?引導學生回憶商不變的性質(zhì)?媒體出示:商不變的性質(zhì):
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。
2、提出猜想
既然分數(shù)與除法的關系這么緊密.除法有商不變性質(zhì),那分數(shù)是否也會有這樣的性質(zhì),請大家大膽猜想一下。(學生可能根據(jù)商不變性質(zhì)推導出分數(shù)的基本性質(zhì),學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)
。ǘ炞C猜想,建構(gòu)新知
1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示學習提示。
學習提示
A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。
B、驗證結(jié)束后,把你的'驗證方法和結(jié)論與小組同學交流。
3、匯報交流
指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。
C、總結(jié)規(guī)律
1、師:請同學們看黑板上的兩組分數(shù),說說它們的分子和分母分別是按什么規(guī)律變化的。指名回答,教師板書。
2、總結(jié):對于任何一個分數(shù),只要滿足:分數(shù)的分子和分母同時乘或除以相同的.數(shù),分數(shù)的大小就不會發(fā)生變化。
3、強調(diào)0除外。哪位同學將分數(shù)的分子和分母同時乘或除以0進行驗證的?
如果有,問他是否驗證出猜想,驗證過程中出現(xiàn)了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規(guī)律:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
教師以3/4為例說明分數(shù)的分子和分母同時乘或除以0是沒有意義的。
師:再次出示分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。這叫做分數(shù)的基本性質(zhì)。(板書課題)
D教學例2
把2/3和10/24都化為分母為12而大小不變的分數(shù)。
學生獨立完成,集體訂正。
。ㄈ┚毩暽A
1、填空
2、下面算式對嗎?如果有錯,錯在哪里?
3、把相等的分數(shù)寫在同一個圈里。
4、老師給出一個分數(shù),同學們迅速說出和它相等的分數(shù)。
。ㄋ模┳鳂I(yè)
教材59頁第9題。
。ㄎ澹┧季S拓展
(六)總結(jié)延伸
師:這節(jié)課你有什么收獲?
五、板書設計
分數(shù)基本性質(zhì)
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)的基本性質(zhì)教學設計3
學習內(nèi)容分析:
“分數(shù)的基本性質(zhì)”是九年義務教育小學數(shù)學北師大版五年級上冊第三單元的內(nèi)容。它是在學生學習了分數(shù)的意義、分數(shù)大小的比較、商不變的性質(zhì)、分數(shù)與除法的關系的基礎上進行的,為以后學習約分、通分做準備。
學習者分析:
學生已掌握了分數(shù)的意義和商不變的性質(zhì),已具備一定的動手操作的能力和分析、概括能力,能用分數(shù)表示圖形的陰影部分,已具備一定的合作交流的意識和經(jīng)驗。
教學目標:
1:經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)基本性質(zhì);
2:能運用分數(shù)基本性質(zhì)解決簡單的實際問題;
3:經(jīng)歷猜想、驗證、實踐等數(shù)學活動,合作學習能力得到提高,并進一步體驗數(shù)學學習的樂趣。
教學重點:
經(jīng)歷主動探索過程并發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì)。
教學難點:
能利用分數(shù)基本性質(zhì)轉(zhuǎn)化分數(shù)。
設計意圖:
“分數(shù)的基本性質(zhì)”在分數(shù)教學中占有重要的地位,它是約分,通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以,分數(shù)的基本性質(zhì)是本單元的教學重點之一,以前我曾經(jīng)聽過幾節(jié)這樣的課,感覺學生都比較容易理解,覺得這知識不難,用不著老師多講了,也就使整節(jié)課顯得有點單調(diào),枯燥。
基于以上原因,我在設計這節(jié)課時,大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的'方法,從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感。
教學過程:
一、復習舊知,引入新課
1、直接寫出得數(shù):
(1)18÷6= (2)120÷40= (3)2÷3=—
180÷60= 12÷4= 10÷15=—
2、你能從前兩組題中回憶起商不變性質(zhì)嗎?(被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。)
3、你能根據(jù)第三組題說出分數(shù)與除法的關系嗎?根據(jù)分數(shù)與除法的關系,將商不變性質(zhì)中的被除數(shù)、除數(shù)、商分別改為分子、分母、分數(shù)值后又怎么說?(分子和分母同時擴大或縮小相同的倍數(shù),分數(shù)值不變。)分數(shù)中是否真有這樣的規(guī)律呢?這節(jié)課我們就來探討這個問題。
(通過上述知識的復習,為下面溝通商不變性質(zhì)與分數(shù)基本性質(zhì)的聯(lián)系作準備。)
二、小組合作,探究新知
1、折一折,畫一畫
師:請同學們拿出準備好的三張長方形紙片。
要求:1)將三張同樣大小的長方形紙片,分別平均分成4份、8份、16份。將第一張的3份畫上陰影,第二張的6份畫上陰影,第三張的12份畫上陰影。
2)用分數(shù)表示陰影部分,
3)將陰影部分剪下來進行比較,看看能發(fā)現(xiàn)什么?
2、匯報。(師將一份學生作品貼在黑板上),
請這一同學談談發(fā)現(xiàn):通過比較,三幅圖陰影部分面積一樣,因而三個分數(shù)一樣大。(師板書三個分數(shù)相等的式子)
3、師出示例2的三幅圖,
4、請學生寫出表示陰影部分的分數(shù),再觀察三幅圖陰影部分面積,同樣得出三個分數(shù)一樣大的結(jié)論。
師:觀察第一組的三幅圖,平均分的份數(shù)和取出的份數(shù)有什么變化嗎?第二組的三幅圖,你又從中發(fā)現(xiàn)了什么?
3、算一算
1)師:剛才大家借助圖形發(fā)現(xiàn)同一組的三個分數(shù)是一樣大的。下面,請大家仔細觀察每一組中三個相等分數(shù)的分子和分母,你又能發(fā)現(xiàn)什么?
2)學生先獨立思考,后小組里討論交流想法。
3)匯報。小組派代表匯報,教師根據(jù)匯報適當板書。
(通過折一折、畫一畫,培養(yǎng)學生的動手操作能力,同時給學生提供充分的感性材料,豐富他們的生活經(jīng)驗又可以激發(fā)學生的學習興趣。)
三、概括性質(zhì),揭示課題
1、師:哪位同學能用一句話把大家發(fā)現(xiàn)的規(guī)律概括出來呢?
2、師:像右邊那樣列式行嗎? = ,為什么?你能將剛才概括出的規(guī)律修正一下嗎?(出示分數(shù)的基本性質(zhì),全班齊讀一遍。)
3、師小結(jié):剛才我們所說的就是分數(shù)的基本性質(zhì),它在課本第四十三頁,請同學們翻開課本看一看,你有哪個地方要提醒大家注意的,請在課本上用筆標示出來。(全班再齊讀一遍)
4、師:分數(shù)的基本性質(zhì)和商不變的規(guī)律有什么聯(lián)系?
(讓學生概括分數(shù)的基本性質(zhì),培養(yǎng)學生的概括能力,通過分子分母同時乘以0,引導學生發(fā)現(xiàn)分母為0,分數(shù)沒有意義,以培養(yǎng)學生思維的縝密性,同時回應前面的復習練習。)
三、解釋應用,強化認知
1、師:利用分數(shù)的基本性質(zhì)可以解決很多問題。
2、第43頁試一試。
觀察分母(或分子)發(fā)生了什么變化,然后在括號里填上適當?shù)臄?shù)。學生獨立完成后,指名回答,著重讓學生說說自己的想法
3、練一練。第44頁第4題。
4、判斷對錯
(1)分數(shù)的分子和分母都乘或除以相同的數(shù),分數(shù)的大小不變。 ( )
(2)把15/20的分子縮小5倍,分母也縮小5倍,分數(shù)的大小不變。 ( )
(3)3/4的分子乘3,分母除以3,分數(shù)的大小不變。 ( )
(4)10/24的分子加5,要使分數(shù)的大小不變,分母也必須加5。 ( )
4、數(shù)學游戲“你說我對”(圖略)
(利用以上練習,運用所學的知識解決實際問題,提高解決問題的能力,培養(yǎng)應用意識。)
四、小結(jié)回顧,評價激勵
這節(jié)課你有什么收獲?運用分數(shù)的基本性質(zhì)解決問題時要注意什么?
(復習所學知識和方法,加深認識,深化主題)
五、布置作業(yè),拓展延伸
1、課本第44頁第1、2、3題。(鞏固所學知識)
分數(shù)的基本性質(zhì)教學設計4
一、教學目標
1.經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2.能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
3.經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。
二、教學重、難點
教學重點是:分數(shù)的基本性質(zhì)。
教學難點是:對分數(shù)的基本性質(zhì)的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
。ㄒ唬、故事引入,揭示課題
1.教師講故事。
猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結(jié)論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)
2.組織討論。
(1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,14=28=312,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:34=68=912。
。3)我們班有40名同學,分成了四組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出:12=24=20xx。
3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:
分數(shù)的分子和分母變化了,
分數(shù)的大小不變。
它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
。 二)、比較歸納,揭示規(guī)律
1.出示思考題。
比較每組分數(shù)的分子和分母:
。1)從左往右看,是按照什么規(guī)律變化的?
。2)從右往左看,又是按照什么規(guī)律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質(zhì)。
。1)從左往右看,由34到68,分子、分母是怎么變化的?引導學生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。
板書:
。2)34是怎樣變化成912的呢? 怎么填?學生回答后填空。
。3)引導口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。
。4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲艘
相同的數(shù))
(5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲裕
。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質(zhì),讓學生說出少了什么?(少了“零除外”)討論:為什么性質(zhì)中要規(guī)定“零除外”?
(板書:零除外)
。7)齊讀分數(shù)的基本性質(zhì)。先讓學生找出性質(zhì)中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質(zhì)。
3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。
思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?
4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
( 三)、溝通說明,揭示聯(lián)系
通過舉例,溝通分數(shù)的'基本性質(zhì)與商不變性質(zhì)之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
。 四)、多層練習,鞏固深化
1.口答。(學生口答后,要求說出是怎樣想的?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質(zhì)中哪幾個字不相符。)
六、教學反思:
學生是學習的主人,教師是數(shù)學學習的組織者、引導者與合作者。因此數(shù)學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調(diào)動學生的學習積極性,向?qū)W生提供充分從事數(shù)學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數(shù)學知識和技能,充分發(fā)揮學生的能動性和創(chuàng)造性!斗謹(shù)的基本性質(zhì)》的教學設計一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結(jié),完全是為學生自主探究、合作交流的學習而設計的。具體表現(xiàn)在:
1、學生在故事情境中大膽猜想。
通過創(chuàng)設“猴王分餅”的故事,讓學生猜測一組三個分數(shù)的大小關系,為自主探索研究“分數(shù)的基本性質(zhì)”作必要的鋪墊,同時又很好地激發(fā)了學生的學習熱情。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。
3、讓學生在分層練習中鞏固深化。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題通過游戲,加深學生對分數(shù)的基本性質(zhì)的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。
反思教學的主要過程,覺得在讓學生用各種方法驗證結(jié)論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數(shù)學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
分數(shù)的基本性質(zhì)教學設計5
【教材依據(jù)】
《分數(shù)的基本性質(zhì)》是九年義務教育北師大版五年級上冊第三單元的內(nèi)容。
【設計理念】
根據(jù)新課標的基本要求,我以培養(yǎng)學生的創(chuàng)新意識和實踐能力為重點,在教學中創(chuàng)設情境讓學生“自由大膽猜想——主動探究驗證——合作交流得到結(jié)果”的開放式教學流程。讓學生在問題情境中激活內(nèi)在要求,大膽猜想,使實驗成為內(nèi)在需求。通過觀察操作、經(jīng)歷知識的形成。讓學生變被動的知識接受者為主動知識的探索者。
【學情與教材分析】
《分數(shù)的基本性質(zhì)》是北師大版小學數(shù)學教材五年級上冊第三單元《分數(shù)》的教學內(nèi)容,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是約分和通分的基礎,而約分和通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。學生之前已經(jīng)掌握了商不變的性質(zhì),在教學之后將其與分數(shù)的基本性質(zhì)進行聯(lián)系,有意識地加強分數(shù)與除法的關系,以便把舊知識遷移到新的知識中來。
【教學目標】
1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。
3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。
【教學重點】運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
【教學難點】聯(lián)系分數(shù)與除法的關系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。
【教學準備】多媒體課件長方形白紙、圓片,彩色筆等。
【教學過程】
一、創(chuàng)設情境,激趣導入
師:同學們,新的學期到來了,你們剛?cè)胄@時覺得我們學校都發(fā)生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農(nóng)場),說到開心農(nóng)場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據(jù)自己的預習告訴老師校長笑什么?
生1:四、五、六年級分的地一樣多。
生2:……
師:到底校長分的`公平不公平,我們來做個實驗吧?
二、動手操作,探究新知
1,小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2,匯報結(jié)果
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大。
生5:……
3、課件展示,得出結(jié)論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結(jié)得到校長分的地一樣多。)
。ㄔO計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)
4、探索分數(shù)的基本性質(zhì)。
師:三個年級分的地一樣多,那么你們覺得、、這三個分數(shù)的大小怎么樣?
生:相等。
師:同學們請看這組分數(shù)有什么特點?(板書=)
生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。
師:請同學們從左往右仔細觀察,第一個分數(shù)和第二個分數(shù)相比分子分母發(fā)生了什么變化?第一個和第二個,第二個和第三個呢?
生:分子分母同時乘2,……
師:誰能用一句換來描述一下這個規(guī)律?
生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)
師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?
生:分數(shù)的分子分母同時除以相同的數(shù)。
師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書分數(shù)的基本性質(zhì))。
師:結(jié)合我們的預習,對于分數(shù)的基本性質(zhì)同學們還有什么不同的意見?
生:0除外。
師:為什么0要除外?
生:因為分數(shù)的分母不能為0.
師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?
生:同時相同0除外
師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?
生:商不變的性質(zhì)。
師:為什么?
生:我們學過分數(shù)與除法的關系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。
師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三:應用新知,練習鞏固。
。ㄒ唬┚氁痪
。ǘ┟蛴螒。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。
(二)判斷(搶答)
1、分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。
2、把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。
3、給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。
(四)測一測
1、把和都化成分母是10而大小不變的分數(shù)。
2、把和都化成分子是4而大小不變的分數(shù)。
3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?
四:總結(jié)。
1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)
五:作業(yè)練習冊2、4題
【板書設計】
分數(shù)的基本性質(zhì)
給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
【教學反思】
本節(jié)課教學,我讓學生在故事中感悟,激發(fā)了他們的學習興趣。在數(shù)學課上講故事,對孩子來說,無疑是新鮮有趣的。不僅如此,還能從中發(fā)現(xiàn)數(shù)學問題,這是多么美好的事情!
這樣的設計真是激發(fā)了學生的學習興趣,學生帶著愉快的心情展開學習。課堂的故事導入就是引導學生以數(shù)學的視角來分析問題、解決問題,從而讓學生感受學習數(shù)學的價值。
本節(jié)課教學是讓學生在感悟中自主探索。自主探索是學生學習活動的核心,它是讓每個學生根據(jù)自己的已有經(jīng)驗、感受,用自己的思維方式,自由、開放地去探索、去發(fā)現(xiàn)、去創(chuàng)造。
在學生通過聽故事、看圖片,讓學生猜想、、這三個分數(shù)是否真的相等,并聯(lián)想學過的知識或借助學具,怎樣證明你的聯(lián)想是正確的。學生想出了多種方法證明這三個分數(shù)也是相等的,體現(xiàn)了學生思維的廣度,這種設計克服了學生思維的惰性,有利于學生自主探索的學習習慣的養(yǎng)成。課堂給學生多設計這樣的開放性的問題,多給學生開展一些探索性的活動,相信不同的學生在數(shù)學上都會有不同的發(fā)展。
分數(shù)的基本性質(zhì)教學設計6
一、教學內(nèi)容
分數(shù)的基本性質(zhì)。(課本第75-76頁的例1、例2及“做一做”、第77頁練習十四的第1-3題)
二、教材簡析
《分數(shù)的基本性質(zhì)》是人教版小學數(shù)學教材第十冊的內(nèi)容之一,在小學數(shù)學學習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是后面進一步學習分數(shù)的計算、比的基本性質(zhì)的基礎。分數(shù)的基本性質(zhì)是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
三、教材處理
以前,教師通常把《分數(shù)的基本性質(zhì)》看作一種靜態(tài)的數(shù)學知識,教學時先用幾個例子讓學生較快地概括出規(guī)律,然后更多地通過精心設計的練習鞏固應用規(guī)律,著眼于規(guī)律的結(jié)論和應用。隨著課程改革的深入,教師們越來越重視學生獲取知識的過程,但我們也看到這樣的現(xiàn)象:問題較碎,步子較小,放手不夠,探究的過程體現(xiàn)不夠充分!斗謹(shù)的基本性質(zhì)》可不可以有別的教學思路呢?新的課程標準提出:“教師應向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法”。根據(jù)這一新的理念,我認為教師可以為學生創(chuàng)設一種大問題背景下的探索活動,使學生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質(zhì),從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學的思想方法,體會科學的學習方法。所以,教師的著眼點,不能只是規(guī)律的結(jié)論和應用,而應有意識地突出思想和方法。基于以上思考,我以讓學生探究發(fā)現(xiàn)分數(shù)基本性質(zhì)的過程為教學重點,創(chuàng)設了一種“猜想——驗證——反思”的教學模式,以“猜想”貫穿全課,引導學生遷移舊知、大膽猜想——實驗操作、驗證猜想——質(zhì)疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。
四、設計意圖:
本課主要本著遵循小學數(shù)學課程標準“創(chuàng)設問題情境提出問題解決問題建立數(shù)學模型解釋數(shù)學模型運用數(shù)學模型拓展數(shù)學模型”的指導思想而設計的。
1、通過故事創(chuàng)設問題情境,貼近學生生活,有利于激發(fā)學生學習興趣。
2、從故事情境中提出問題,體現(xiàn)數(shù)學來源于生活。
3、小組合作學習,共同探究解決問題,讓學生充分體驗知識產(chǎn)生的過程。
4、從幾組分數(shù)中分析,找到分數(shù)的基本性質(zhì),從而初步建立數(shù)學模型。
5、設計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。
6、在游戲活動中對數(shù)學知識進行拓展運用。
五、教學目標
1、知識與技能
(1)經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
(2)能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
2、情感態(tài)度與價值觀
(1)經(jīng)歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。(2)體驗數(shù)學與日常生活密切相關。
3、過程與方法
(1) 經(jīng)歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分
數(shù)的基本性質(zhì)作出簡要的、合理的說明。
(2) 培養(yǎng)學生的觀察、比較、歸納、總結(jié)概括能力。
(3)能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。
六、教學重點
理解分數(shù)的基本性質(zhì)
七、教學難點
能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)
八、教學準備
教師:電腦課件
學生:圓紙片 長方形紙
九、教學過程:
。ㄒ唬┗仡檹土,舊知鋪墊。
課件出示復習題
1、商不變的性質(zhì)
12÷3=( )
(12×10)÷(3×10)=( )
。12÷3)÷(3÷3)=( )
利用什么知識填空的?
2、除法與分數(shù)的關系
30 ÷ 120 =( )/( )
( )÷( ) =17/51
利用什么知識填空的?
。ǘ┕适乱,揭示課題。
課件出示故事(動畫):從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦不對,是三個小和尚。小和尚最喜歡吃老和尚做的餅啦。有一天,老和尚做三塊大小一樣的餅,想給小和尚吃,還沒給,小和尚就叫開了,“我要一塊”,“我要兩塊”,“嘻嘻,我不要多,只要四塊。”老和尚二話沒說,把第一塊餅平均分成4塊,取出其中1塊給第一個和尚;把第二塊餅平均分成8塊,取其中2塊給高和尚。把第三塊餅平均分成16塊,取其中的4塊給了胖和尚。小朋友,你知道哪個和尚分得多嗎?
生1:胖和尚吃的多。 生2:矮和尚吃的多。 ……
師:到底誰回答得對呢?我們一起動手分餅來求證吧
1、合作探究
師:請同學們以兩人一組,拿出三個大小相等的圓,分別用陰影部分表示每個和尚分得的餅(教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契。)
師:比較一下陰影部分的大小,結(jié)果怎樣?
生:陰影部分的大小相等。
師:陰影部分相等說明每個和尚分的餅相等.
師:請同學們用分數(shù)表示陰影部分
師:陰影部分相等說明這三個分數(shù)怎樣?
生:三個分數(shù)相等。(隨著學生的回答,老師將板書的三個分數(shù)用“=”連接。)
2、組織討論。
師:仔細觀察這三個分數(shù)什么變了,什么沒有變?
讓學生小組討論后答出:它們分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
師:它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
3、比較歸納
同學們:從左往右觀察,這三個分數(shù)的分子和分母是按照什么規(guī)律變化的才保證了分數(shù)的大小不變的?
集體討論幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)
師:從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)
4、揭示規(guī)律
教師小結(jié):“剛才大家都觀察得很仔細,像分數(shù)的分子、分母發(fā)生的.這種有規(guī)律的變化,它的大小不變。就是我們這節(jié)課學習的新知識。(板書課題:分數(shù)的基本性質(zhì))
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,能把它歸納成一句話嗎?(小組討論發(fā)言)
師:剛才同學們都用自己的語言說了分數(shù)的基本性質(zhì),我們的書上也總結(jié)了分數(shù)的基本性質(zhì),現(xiàn)在請打開書看到75頁?纯春臀覀兛偨Y(jié)的有什么不同,并用波浪線表出關鍵的詞。(如:同時,相同,0除外等)
全班討論:為什么要規(guī)定0除外”?
引導:現(xiàn)在同學們知道了聰明的老和尚是用運用什么規(guī)律來分餅,既滿足小和尚的要求,又分得那么公平?
。ㄈ┦崂頊贤,靈活運用。
1、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的聯(lián)系。
想一想,根據(jù)分數(shù)與除法的關系,以及整數(shù)除法中商不變的規(guī)律,你能說明分數(shù)的基本性質(zhì)嗎?
啟發(fā)學生說出它們之間的聯(lián)系:
。1)分子相當于被除數(shù),分母相當于除數(shù);
(2)被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除
以相同的數(shù);
(3)“相同的數(shù)”中要求“0除外”;
(4)商不變相當于分數(shù)的大小不變。
2、分數(shù)基本性質(zhì)的應用
。1)出示課本第76頁例2,把2/3 和10/24 分別轉(zhuǎn)化成分母是12而大小不變的分數(shù)。
。2)認真審題,弄清題意。
要求學生讀題后歸納出題目的要求。
a.分母都變成12
b.分數(shù)的大小不變
。3)想一想:怎么化,根據(jù)什么?
過程要求:
a.學生獨立思考,完成題目要求;
b.全班反饋,教師課件顯示;
。ㄋ模┒鄬泳毩,鞏固深化。
1、完成教科書第77頁練習十四的第1-3題。
。1)第1題
此題著重練習分數(shù)的相等和不等。練習時,讓學生按照題目的要求涂色。
。2)第2題
此題是運用分數(shù)的基本性質(zhì)比較分數(shù)大小的實際問題,學生在練習中將2/5化成4/10,或者把4/10化成2/5,再作比較,都是可以的。
(3)第3題,說出相等的分數(shù)(對口令)
此題是運用分數(shù)基本性質(zhì)的游戲練習.游戲時,讓學生以同桌為單位.仿照第3題的樣子,一個人先說一個分數(shù),另一個人回答一個相等的分數(shù),然后交換先后順序。
2、教科書76頁 “做一做”
(1)由學生獨立完成,然后同學交流.
。2)全班反饋,說一說思維過程.
(五)小結(jié)
教師:同學們,通過今天的學習,你有什么收獲?
,題界知家數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除
(六)動腦筋出教室游戲(機動)
讓學生拿出課前發(fā)的寫有分數(shù)的紙片,要求學生看清手中的分數(shù)。與 相等的,報出自已的分數(shù)后先離場,與相等的再離場,與相等的最后離場。
十、板書設計
商不變的性質(zhì)
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)與除法的關系
a÷b =a/b(b≠0)
分數(shù)的基本性質(zhì)
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)的基本性質(zhì)教學設計7
一、教學目標:
1、讓學生經(jīng)歷分數(shù)基本性質(zhì)的探究過程,理解和掌握分數(shù)的基本性質(zhì),初步建立數(shù)學模型。
2、利用分數(shù)的基本性質(zhì)把一個分數(shù)化為指定分母(或分子)而大小不變的分數(shù)。
3、培養(yǎng)學生的觀察、概括等思維能力及(滲透變與不變)數(shù)學學習興趣。
二、教學重點:
理解掌握分數(shù)的基本性質(zhì),它是約分,通分的依據(jù)
三、教學難點:
理解和掌握分數(shù)的基本性質(zhì),初步建立數(shù)學模型。
四、教學準備:
課件、正方形的紙。
五、教學設計過程:
(一)遷移舊知.提出猜想
1、回憶舊知
猜信封:老師手上的信封里有一個數(shù)、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3
你為什么這樣猜呢?引導學生回憶分數(shù)與除法的關系。媒體演示:分數(shù)與除法的關系:
被除數(shù)÷除數(shù)=
誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質(zhì)?媒體出示:商不變的性質(zhì):
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。
2、提出猜想:
既然分數(shù)與除法的關系這么緊密.除法有商不變性質(zhì),那分數(shù)是否也會有這樣的.性質(zhì),請大家大膽猜想一下。(學生可能根據(jù)商不變性質(zhì)推導出分數(shù)的基本性質(zhì),學生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)
(二)驗證猜想,建構(gòu)新知
A、 看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數(shù),并把相同的分數(shù)分在一起。
B、 討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
C、研究規(guī)律
師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者
除以一個相同的數(shù)
得到的分數(shù)
研究對象與得到的分數(shù)相等嗎?
相等( )不相等( )
猜想是否成立?
成立( )不成立( )
充分利用學生的生成資源:揭示課題:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。(板書)
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數(shù)的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數(shù),0除外)
師:分數(shù)的基本性質(zhì)與商不變性質(zhì)有什么聯(lián)系?
D、質(zhì)疑完善
3/4 = 3×( )/ 4×( )
師:括號中可以填哪些數(shù)?
預設:可以填無數(shù)個數(shù)
師:如果只用一個數(shù)來表示,填什么數(shù)好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數(shù)學模型。3/4= 3×X/ 4×X(X≠0)
讓學生打開課本進行閱讀、內(nèi)化,并想一想還有什么問題嗎?
。ㄈ 練習升華
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化為分母為12而大小不變的分數(shù)。
3、把2/3和3/4都化為分子為6而大小不變的分數(shù)。
4、把2/5的分子加上2以后,要使分數(shù)的大小不變,分母應加上多少?
5、 和 哪一個分數(shù)大,你能講出判斷的依據(jù)嗎?
。ㄋ模┛偨Y(jié)延伸
師:這節(jié)課學了什么?
師:如果一個分數(shù)為A/B,你能用一個式子來表示分數(shù)的基本性質(zhì)嗎?
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)
六、作業(yè)p87-1、2
板書設計
分數(shù)基本性質(zhì)
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)
6÷8
3÷4
12÷16
分數(shù)的基本性質(zhì)教學設計8
教學內(nèi)容:
蘇教版數(shù)學五年級下冊第60~61頁例1、例2,試一試及練習十一1~3題。
預設目標:
1、使學生經(jīng)歷探索分數(shù)基本性質(zhì)的過程,初步理解和掌握分數(shù)的基本性質(zhì),知道它與商不變規(guī)律之間的聯(lián)系。
2、使學生能應用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母或分子而大小不變的分數(shù)。
3、使學生在觀察、操作、思考和交流等活動中,培養(yǎng)分析、綜合和抽象、概括能力,體驗數(shù)學學習的樂趣。
教學重點:
探索、發(fā)現(xiàn)、歸納和理解分數(shù)的基本性質(zhì)。
教學過程:
一、導入
猜謎:你有我有他也有,黑身子黑腿黑腦袋,燈前月下伴你走,就是從來不開口。
二、學習新知
1、提供例證
。1)觀察兩個算式:1÷32÷6,問這兩個算式的商相等嗎?你的依據(jù)是什么?你能接著往下再寫一個除法算式嗎?
板書:1/3=2/6=3/9(得出三個相等的分數(shù))
。2)學生折紙找與1/2相等的分數(shù)。
你能先對折,涂色表示它的1/2嗎?你能通過繼續(xù)對折,找出和1/2相等的其他分數(shù)嗎?
展示與1/2相等的分數(shù),并逐步板書:1/2=2/4=4/8=8/16
2、誘導探索
提問:這些分數(shù)的分子、分母都不同,但是它們的大小都是一樣的,這里隱藏著什么規(guī)律呢?分數(shù)的分子、分母怎樣變化分數(shù)的大小不變呢?
3、探究新知
。1)獨立思考或小組交流。
(2)探究驗證。
你能從(1/2=2/4、1/2=4/8、1/2=8/16)這三組分數(shù)中任意選一組具體說說分數(shù)的分子、分母怎樣變化以后,分數(shù)的大小不變?
教師根據(jù)學生的回答進行板書。
4、揭示結(jié)論:出示分數(shù)的基本性質(zhì)的內(nèi)容,并揭示課題。
5、深究結(jié)論:
。1)在分數(shù)的基本性質(zhì)中,你認為哪些字詞比較重要,為什么?
。2)齊讀并理解記憶分數(shù)的基本性質(zhì)。
三、多層練習
1、填一填。(在○里填運算符號,在□里填數(shù)或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判斷。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、課堂作業(yè):
1、第62頁“練一練”2。
2、第63頁第3題。
3、每日一題:請判斷3/4和3+6/4+8是否相等,為什么?
反思
“分數(shù)的基本性質(zhì)”在分數(shù)教學中占有重要的地位,它是約分、通分的依據(jù),對于以后學習比的基本性質(zhì)也有很大的幫助,所以分數(shù)的基本性質(zhì)是本單元的教學重點。這節(jié)課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數(shù)學知識,更主要的是數(shù)學學習的方法,
從而激勵學生進一步地主動學習,產(chǎn)生我會學的成就感,讓學生學會學習,學會思考,學會創(chuàng)造,進而培養(yǎng)學生用數(shù)學的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質(zhì)。學生已掌握了商不變的性質(zhì)之后,并在已有應用經(jīng)驗的基礎上進行的,這節(jié)課我是這樣設計教學的:
1、通過商不變的性質(zhì)、除法與分數(shù)的關系的復習,幫助學生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學習做好必要的準備。
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內(nèi)容,并對學生的猜想提出質(zhì)疑,激發(fā)學生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學以學生為本的`特性。每一步教學,都強調(diào)學生自主參與,通過規(guī)律讓學生自主發(fā)現(xiàn)、方法讓學生自主尋找、問題讓學生自主解決,使學生獲得成功的體驗,增強學習的自信心。
3、讓學生在多層練習中鞏固深化。
在練習的設計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。填空題第1、2題是基本練習,主要是幫助學生理解概念,并全面了解學生掌握新知識的情況。第3、4題是在第1、2題的基礎上,進一步讓學生進行鞏固練習,加深對所學知識的理解。第4題是開放題,加深學生對分數(shù)的基本性質(zhì)的認識,激發(fā)學生學習的興趣,活躍課堂氣氛。這樣不僅能照顧到學生思維發(fā)展的過程,而且有效拓寬了學生的思維空間,真正做到了學以致用。
反思教學的主要過程,覺得在讓學生用各種方法驗證結(jié)論的正確性的時候,拓展得不夠,要放開手讓學生尋找多種途徑去驗證。因為數(shù)學教學并不是要求教師教給學生問題的答案,而是教給學生思維的方法。
分數(shù)的基本性質(zhì)教學設計9
教學目標:
結(jié)合趣味故事經(jīng)歷認識分數(shù)的基本性質(zhì)的過程。
初步理解分數(shù)的基本性質(zhì),會應用分數(shù)的基本性質(zhì)進行分數(shù)的改寫。
經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣
教學重點:
理解掌握分數(shù)的基本性質(zhì)。
教學難點:
歸納分數(shù)的性質(zhì)。
學生準備:
長方形紙片。
一、創(chuàng)設故事情境,激發(fā)學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創(chuàng)設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經(jīng)驗和分數(shù)知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數(shù)的基本性質(zhì)提供實踐經(jīng)驗。在看完故事后向?qū)W生提問你了解到了哪些數(shù)學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數(shù)大小是相等的。而這兩個分數(shù)的分子和分母都不相等,可分數(shù)卻相等,這其中有什么規(guī)律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數(shù)的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續(xù)對折,每次找一個和1/4相等的其他分數(shù)嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數(shù)表示涂色的部分,得到的分數(shù)與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規(guī)律
。1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
。2既然這三個分數(shù)相等,那么我們可以用什么符號把它們連接起來?
。3)這三個分數(shù)的分子、分母都不相同,為什么分數(shù)的.大小卻相等的?你們能找出它們的變化規(guī)律嗎?請同學們四人為一組,討論這兩個問題
。4)通過從左到右的觀察、比較、分析,你發(fā)現(xiàn)了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數(shù)不一樣,但陰影部分的面積相等,四個分數(shù)也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維!
3引導觀察:請大家觀察每個等式中的兩個分數(shù),它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內(nèi)交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變?yōu)榕c它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規(guī)律?再從右往左看:4/16是怎樣變化成與之相等的2/8的?2/8、1/4呢?用一句話說出它的變化規(guī)律?
4、歸納規(guī)律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規(guī)律?
學生交流歸納,最后全班反饋“分數(shù)的分子和分母同時乘或除以相同的數(shù)﹙0除外﹚,分數(shù)的大小不變,這是分數(shù)的基本性質(zhì)”
6、小結(jié)
同學們在這節(jié)課的學習中表現(xiàn)得很出色,說一說你有什么收獲或體會?
【通過小結(jié),既對整個課堂學習的內(nèi)容有一個總結(jié),又能讓學生產(chǎn)生后續(xù)學習和探究的欲望,將學生的學習興趣延伸到了下節(jié)課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調(diào)動了學生學習的積極性。
五、游戲找朋友。
六、布置作業(yè):
在上這課之前,認真?zhèn)湔n,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農(nóng)村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創(chuàng)設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發(fā)言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規(guī)律,最后也都一一的解答并歸納分數(shù)的性質(zhì)。對于從左到右的變化,分子分母都變大了,但分數(shù)大小不變。從右到左,分子分母都變小,分數(shù)大小不變。從而得出規(guī)律。對于這分數(shù)的性質(zhì)要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數(shù)”“零除外”重點讓學生熟記分數(shù)的性質(zhì)。多層的鞏固練習。加深學生的理解。并且能運用分數(shù)的性質(zhì)完成作業(yè)。最后,讓學生輕松愉快地應用著這節(jié)課所學的知識進行找朋友的游戲。
分數(shù)的基本性質(zhì)教學設計10
教材分析
1.分數(shù)基本性質(zhì)是約分和通分的基礎,而約分、通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)基本性質(zhì)顯得尤為重要。而分數(shù)與除法的關系以及除法中的商不變規(guī)律,與這部分知識緊密聯(lián)系,是學習這部分內(nèi)容的基礎。
2.教材安排了兩個學習活動,讓學生尋找相等的分數(shù),通過活動使學生初步體驗分數(shù)的大小相等關系,為觀察發(fā)現(xiàn)分數(shù)的基本性質(zhì)提供的豐富的學習資料,然后引導學生分別觀察這兩組相等的分數(shù),尋找每組分數(shù)的分子、分母的變化規(guī)律,并展開充分的交流討論,在此基礎上歸納出:分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。
學情分析
學生已明確商不變規(guī)律,分數(shù)與除法的關系等知識,這些都為本課學習做了知識上的鋪墊。五年級學生已經(jīng)初步養(yǎng)成了合作學習的習慣,并具有了一定的分析和解決問題的能力,因此能夠在教師的引導下完成“質(zhì)疑—探索——釋疑——應用”這一完整的學習過程。
因此在教學中,我主要采用引導學生探索以及小組合作學習相結(jié)合的方法,讓學生探索出分數(shù)的基本性質(zhì),并會運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同但大小相等的分數(shù),能有效地提高教學效率。
教學目標
經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)基本性質(zhì)。
能運用分數(shù)基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
經(jīng)歷觀察、操作和討論等學習活動,體驗數(shù)學學習的樂趣。
教學重點和難點
理解分數(shù)基本性質(zhì),能運用分數(shù)基本性質(zhì)轉(zhuǎn)化分數(shù)。
教學過程
一、復習導入
二、探究新知
實踐操作,探究規(guī)律
觀察發(fā)現(xiàn):初步概括分數(shù)基本性質(zhì)
括歸納分數(shù)基本性質(zhì)
三、課堂練習
四、課堂小結(jié)
出示復習題口答卡片, 復習商不變的規(guī)律、分數(shù)與除法的關系。1、 講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”
提出問題: 這些分數(shù)都相等嗎?
觀察這組相等的分數(shù),你發(fā)現(xiàn)了什么?把你的發(fā)現(xiàn)說給同伴聽。
分子、分母都乘或除以一個數(shù),這個數(shù)可以是0嗎?為什么?
1、課本P43的“試一試”2、數(shù)學游戲:說出相等的分數(shù)3、課本P44的“練一練”第1~2、4
通過這節(jié)課的學習、你學會了那些知識
口答
小組討論
拿出準備好的圓形紙片,折一折,畫一畫、涂一涂
小組討論、交流
小組討論、交流
做練習,完成后集體交流。
說說,讀分數(shù)基本性質(zhì)
復習舊知,為學習新知識作鋪墊。
將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀評價,為后續(xù)探究營造良好氛圍。
讓學生通過實踐操作,激發(fā)學生參與學習探究的興趣,通過合作探究,初步感知有些分數(shù)的分子、分母不同,但分數(shù)的大小卻相等。
引導學生通過不同形式的觀察,逐步總結(jié)出存在的規(guī)律,這樣由淺入深,循序漸進,有利于學生探究學習知識。
在學生初步發(fā)現(xiàn)規(guī)律的基礎上,進一步理解分數(shù)的基本性質(zhì),并對分數(shù)的基本性質(zhì)進行全面概括。
讓學生利用分數(shù)的'基本性質(zhì)解決問題,使學生對分數(shù)的基本性質(zhì)理解的更深刻,同時體驗解決問題的樂趣。
對本節(jié)課的所學知識的回顧,及所學知識點的總結(jié)。
板書設計(需要一直留在黑板上主板書)分數(shù)基本性質(zhì)被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(零除外),商不變,這就是商不變的規(guī)律分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變,這叫做分數(shù)基本性質(zhì)。
教學反思:
分數(shù)的基本性質(zhì)在小學階段是數(shù)運算的又一次質(zhì)的飛躍與擴展,是重要的一個環(huán)節(jié)。我在引導學生觀察探究中,重視學生的主動參與,多次組織學生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數(shù)的分子、分母是按一定的規(guī)律變化而分數(shù)大小不變。體現(xiàn)了理解與掌握數(shù)與數(shù)之間聯(lián)系、變化的觀點。
在本節(jié)課中,由于我對學困生關注度不高,,使得他們在分數(shù)基本性質(zhì)應用的過程中產(chǎn)生了困難。小組合作探究中的小組學習亦要不斷地完善。
分數(shù)的基本性質(zhì)教學設計11
一、故事引人,揭示課題。
1.教師講故事。猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊。”猴王就把第二塊餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給猴3三塊。同學們,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結(jié)論:三只猴子分得的餅一樣多。
引導:聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道嗎?學習了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)
[一上課,先聽講一段故事,學生非常樂意,并會立即被吸引。思考故事當中提出的問題,學生自然興趣濃厚。通過故事設疑,激起了學生探求新知的欲望。]
2.組織討論。
。1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關系呢?這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:這三個分數(shù)是相等關系,1/4=2/8=3/12,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
(2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:3/4=6/8=9/12。
。3)我們班有50名同學,分成了五組,每組10人。那么第一、二組學生的人數(shù)占全班學生人數(shù)的幾分之幾?引導學生用不同的分數(shù)表示,然后得出:1/2=2/4=20/40。
3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學生回答后板書:
分數(shù)的分子和分母變化了, 分數(shù)的大小不變。
它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
3.出示例2:把1/2和10/24化成分母是12而大小不變的分數(shù)。
思考:要把1/2和10/24化成分母是12而大小不變的分數(shù),分子怎么不變?變化的依據(jù)是什么?
4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
[得出性質(zhì)后,再讓學生說出猴王的想法,并回答如果小猴子要四塊,猴王怎么辦?既前后照應,又讓學生在輕松愉快的幫猴王想辦法的過程中,運用新知解決實際問題。]
5.質(zhì)疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
通過舉例,溝通分數(shù)的基本性質(zhì)與商不變性質(zhì)之間的聯(lián)系。引導學生運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)。如:3/4=3÷4=(3×3)÷(4×3)=9÷12=9/12
[有助于學生順利地運用分數(shù)與除法的關系,以及整數(shù)除法中商不變性質(zhì)說明分數(shù)的基本性質(zhì),實現(xiàn)新知化歸舊知。]它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
二、比較歸納,揭示規(guī)律。
1.出示思考題。
2.比較每組分數(shù)的分子和分母:
。1)從左往右看,是按照什么規(guī)律變化的?
。2)從右往左看,又是按照什么規(guī)律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質(zhì)。(1)從左往右看,由3/4到6/8,分子、分母是怎么變化的?引導學生回答出:把3/4的分子、分母都乘以2,就得到6/8。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到6/8。
板書:
(2)3/4是怎樣變化成9/12的呢?怎么填?學生回答后填空。
。3)引導口述:3/4的`分子、分母都乘以2,得到6/8,分數(shù)的大小不變。
(4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學生回答后,要求學生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
(板書:都乘以 相同的數(shù))
。5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲 )
。6)引導思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質(zhì),讓學生說出少了什么?(少了“零除外”)討論:為什么性質(zhì)中要規(guī)定“零除外”?
。ò鍟毫愠猓
。7)齊讀分數(shù)的基本性質(zhì)。先讓學生找出性質(zhì)中關鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質(zhì)。
[新知識力求讓學生主動探索,逐步獲取!昂锿醴诛灐焙头治霭嗉墝W生人數(shù)得出的三組相等的分數(shù)為學生探索新知提供材料,出示的思考題是學生探求新知、獨立思考的指南,教師環(huán)緊扣的提問以及引導學生逐步展開的充分的討論,幫助學生一步步走向結(jié)論。]
分數(shù)的基本性質(zhì)教學設計12
教學內(nèi)容:
人教版小學數(shù)學第十冊第107頁至108頁。
教學目標:
1、知識目標:通過教學使學生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。
2、能力目標:培養(yǎng)學生的觀察能力、動手操作能力和分析概括能力等。
3、情感目標:讓學生在學習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。
教學準備:
長方形紙片、彩筆、各種分數(shù)卡片。
教學過程
一、創(chuàng)設情境,激發(fā)興趣
1.課件示故事。同學們,今天是快樂的,老師祝愿同學們節(jié)日快樂!在我們歡慶自己的節(jié)日時,花果山圣地也早已是一派節(jié)日喜慶的氣氛。
【六一節(jié)到了,猴山上張燈結(jié)彩,小猴們享受著節(jié)日的快樂。猴王給小猴們做了三塊他們愛吃的餅。它先把第一塊餅平均切成四塊,分給第一只小猴貝貝一塊。第二只小猴佳佳見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給第二只小猴兩塊。第三只小猴丁丁急了,它搶著說:“我要三塊,我要三塊!庇谑,猴王又把第三塊餅平均切成十二塊,分給第三只小猴丁丁三塊。貝貝、佳佳見了,連忙說:“猴爺爺,不公平,不公平,我們要分得和丁丁的同樣多!薄
“同學們,猴王真的分得不公平嗎?”
二、動手操作、導入新課
同學們,這個故事告訴了我們什么?猜想一下猴王分得公平嗎?為什么公平?我們平常怎樣去做?讓我們也來分分看。請每組拿出課前準備的三張長方形紙片,共同來分一分,并完成操作報告(課件出示操作報告)。請小組長分工一下,明確記錄的同學。
任選一小組的同學臺前展示實驗報告,并匯報結(jié)論。
教師根據(jù)學生匯報板書:14=28=312
2.組織討論。
(1)通過操作我們發(fā)現(xiàn)三只猴子分得的餅同樣多,表示它們分得餅的分數(shù)是相等關系。那么,這三個分數(shù)什么變了,什么沒有變?讓學生小組討論后答出:它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?學生通過觀察演示得出結(jié)論教師板書:34=68=912。
3.引入新課:黑板上二組相等的分數(shù)有什么共同的特點?學生回答后板書:分數(shù)的分子和分母, 分數(shù)的大小不變。雖然他們的分子和分母變化了,但是它們的大小卻不變。那么他們的分子和分母變化有規(guī)律嗎?我們今天就來共同探討這個變化規(guī)律。
三、比較歸納,揭示規(guī)律。
請每組拿出探究報告,任意選擇黑板上的二組相等分數(shù)中的一組,共同討論、探究,并完成探究報告。
1.課件出示探究報告。
2.分組匯報,歸納性質(zhì)。
(1)從左往右看,分子、分母的變化規(guī)律怎樣?選擇一組學生根據(jù)探究報告,到黑板上邊說邊用箭頭表示出分子、分母的變化過程。
(根據(jù)學生回答板書:同時乘上 相同的數(shù))
。2)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?
。ǜ鶕(jù)學生的回答板書:除以 )
。3)有與這一組探究的分數(shù)不一樣的嗎?你們得出的規(guī)律是什么?
(4)綜合剛才的探究,你發(fā)現(xiàn)什么規(guī)律?
根據(jù)學生的回答,揭示課題,
。ā@叫做板書:分數(shù)的基本性質(zhì))
對這句話你還有什么要補充的?(補充“零除外”)
討論:為什么性質(zhì)中要規(guī)定“零除外”?
。t筆板書:零除外)
。5)齊讀分數(shù)的基本性質(zhì)。在分數(shù)的基本性質(zhì)中,你認為要提醒大家注意些什么?(同時、相同的數(shù)、0除外)。為什么?你能舉例說明嗎?教師則根據(jù)學生回答,在相應的字下面點上著重號。
師生共同讀出黑板上板書的'分數(shù)基本性質(zhì)(要求關鍵的字詞要重讀)。
3、智慧眼(下列的式子是否正確?為什么?)
。1)35=3×25=65 (生:35的分子與分母沒有同時乘以2,分數(shù)的大小改變。)
(2)512=5÷512÷6=12 (生:512的分子除以5,分母除以6,除數(shù)的大小不同,分數(shù)的大小也不同)
(3)112=1×312÷3=34 (生:112的分子乘以3,而分母除以3,沒有同時乘以或除以,分數(shù)的大小不相等。)
(4)25=2×x5×x=2x5x (生:x在這里代表任何數(shù),當x=0時,分數(shù)的大小改變。)
4、示課件討論:現(xiàn)在你知道猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?用分數(shù)表示為?如果要五塊呢?
四、回歸書本,探源獲知
1、瀏覽課本第107—108頁的內(nèi)容。
2、看了書,你又有什么收獲?還有什么疑問嗎?
3、師生答疑。
你會運用分數(shù)與除數(shù)的關系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)嗎?
4、自主學習并完成例2,請二名學生說出思路。
五、多層練習,鞏固深化。
1、熱身房。35=3×( )5×( )=9( )
824=8÷( )24÷( )=( )3
學生口答后,要求說出是怎樣想的?
分數(shù)的基本性質(zhì)教學設計13
教學目標:
1、讓學生理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學習約分和通分打下基礎。
學習目標:
1、理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2、根據(jù)分數(shù)的基本性質(zhì),學會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù)
重點難點:
1、使學生理解分數(shù)的基本性質(zhì)。
2、讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關的問題。
過程設計:
一、激情導入
1、導入課題
生讀故事。
唐僧師徒四人在西天取經(jīng)的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經(jīng)很多了,高興得答應了?墒俏蚩諈s在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?
師:孫悟空為什么笑呢?二分之一、四分之二、八分之四這三個分數(shù)到底有什么關系呢?下面我們用折紙的方法來看一下它們之間有什么樣的關系?
2、明確目標
理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系;并會應用分數(shù)的基本性質(zhì)。
3、預期效果
達到教學目標
二、民主導學
任務一
任務呈現(xiàn)
動手操作驗證性質(zhì)
自主學習
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發(fā)現(xiàn)什么?
師:同位分工合作完成,F(xiàn)在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發(fā)現(xiàn)?
請二至三位同學說一說。
師:我們都發(fā)現(xiàn)了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?
生回答。師:現(xiàn)在你們知道孫悟空為什么笑了嗎?請同學回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數(shù)的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)
下面請同學們把這個式子從左往右地觀察,看一下每個分數(shù)的分子分母怎樣變化?才得到下一個分數(shù)。
生:我發(fā)現(xiàn)了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
師:你們想得一樣嗎?我把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數(shù)的大小不變,那如果我們把分數(shù)的分子分母同時乘5分數(shù)的大小變嗎?同時乘以10呢?那你們能不能根據(jù)這個式子來總結(jié)一個規(guī)律呢?
生回答:一個分數(shù)的分子分母同時擴大相同的倍數(shù),它們分數(shù)的大小不變。
請一至二名同學回答。
師板書:分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發(fā)現(xiàn)什么呢?
請一同學回答,
生:我們發(fā)現(xiàn)了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。
師:嗯,分數(shù)的分子分母同時除以2分數(shù)的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據(jù)這個式子再總結(jié)出一句話呢?
生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。 (二名學生重復)
師板書:或者除以
師:你能根據(jù)剛才總結(jié)的規(guī)律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流
師指著板書說明:我們說分子分母同時乘或除以相同的數(shù),分數(shù)的大小不變,那是不是包括所有的.數(shù)呢?我們一起來看這樣一個分數(shù)。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)
生:不成立,
師:為什么
生:因為0不能作除數(shù),
師:0不能作除數(shù),所以這個式子是錯誤的。(畫叉)
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)
生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。
師:對,大家都知道0不能作除數(shù),所以這兩個式子都是不成立的?(畫叉)我們剛才總結(jié)的分數(shù)的分子分母同時乘或者除以相同的數(shù),不是所有的數(shù)需要加上一句什么話
生:0除外
師板書0除外
師:到現(xiàn)在為止這個規(guī)律我們就總結(jié)完了,那在這個規(guī)律里你覺得什么地方需要我們注意一下呢?
生:同時和相同的數(shù)
師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學習的分數(shù)的基本性質(zhì)。(師板書課題)
師:我相信如果當時豬八戒會這個分數(shù)的基本性質(zhì),那就不會出現(xiàn)這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。
生齊讀二遍。
師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。
任務二
任務呈現(xiàn)
課本76頁的例2,請一同學讀題。
自主學習
生獨立完成,完成后和同位的同學說一說你是怎樣想的。
展示交流
每題請二名同學回答,(集體訂正答案)
檢測導結(jié)
1、目標練習
76頁“做一做”
練習十四的1、2、6、7題
2、結(jié)果反饋
生做完后同桌交流,再指名說說結(jié)果。
3、反思總結(jié)
今天這節(jié)課你都學會了哪些知識?請大家談談學習了分數(shù)的基本性質(zhì)的收獲。
三、輔助設計
教具課件設計
小黑板正方形紙數(shù)塊
板書設計
分數(shù)的基本性質(zhì)
練習和作業(yè)設計
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結(jié):這節(jié)課我們學習了分數(shù)基本性質(zhì),而且我們還學會了根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)轉(zhuǎn)化成和它相等的另外一個分數(shù),其實生活當中還有許多的數(shù)學知識,如果你留心觀察,你就能夠發(fā)現(xiàn),我希望大家都能做一個在學習上面的有心人。
分數(shù)的基本性質(zhì)教學設計14
教學要求
①使學生理解分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
、谂囵B(yǎng)學生觀察、分析和抽象概括能力。
③滲透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。
教學重點理解分數(shù)的基本性質(zhì)。
教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創(chuàng)設情境
1、120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?
2、說一說:
(1)商不變的性質(zhì)是什么?
。2)分數(shù)與除法的關系是什么?
3、填空。
1÷2=(1×2)÷(2×2)=。
二、揭示課題
讓學生大膽猜測:在除法里有商不變的性質(zhì),在分數(shù)里會不會也有類似的性質(zhì)存在呢?這個性質(zhì)是什么呢?
隨著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。
三、探索研究
1、動手操作,驗證性質(zhì)。
。1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。
(2)觀察比較后引導學生得出:
。3)從左往右看:
由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?
把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即==(板書)。
把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:==(板書)。
引導學生初步小結(jié)得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。
。4)從右往左看:
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
板書:
讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。
(5)引導學生概括出分數(shù)的基本性質(zhì),并與前面的猜想相回應。
(6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)
2、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的'比較。
在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。
想一想:根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?
3、學習把分數(shù)化成指定分母而大小不變的分數(shù)。
(1)出示例2,幫助學生理解題意。
。2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應該怎樣變化?變化的根據(jù)是什么?
。3)讓學生在書上填空,請一名學生口答。教師板書:
4、練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結(jié)
1、這節(jié)課我們學習了什么內(nèi)容?
2、什么是分數(shù)的基本性質(zhì)?
六、課堂作業(yè)
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
后記:
分數(shù)的基本性質(zhì)教學設計15
【教學內(nèi)容】:
【教學目標】:
1、使學生理解和掌握分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2、通過猜想、驗證、歸納、總結(jié)等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結(jié)合的思考方法,感受抽象、推理的基本數(shù)學思想。
3、在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣,提高學生發(fā)現(xiàn)問題的能力。
【教學重點】:經(jīng)歷質(zhì)疑、猜想、驗證、觀察、歸納的學習過程,探究分數(shù)的.基本性質(zhì)。
【教學難點】:理解和掌握分數(shù)的基本性質(zhì)。
【教學方法】:
本節(jié)課我綜合采用了談話法,情境創(chuàng)設法、引導探究法、直觀演示法,組織學生經(jīng)歷觀察,猜測,得出結(jié)論。
【學法指導】:
為了有效的達成上述教學目標,秉著新課程標準的精神指導,在整個教學活動中力求充分體現(xiàn)學數(shù)學就是做數(shù)學,數(shù)學教學就是數(shù)學活動的教學的理念,以學生為主體,以學生發(fā)展為本。在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法。引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。
【教學準備】:
1、媒體準備:白板
2、資源準備:PPT
【資源運用】:
1、導入——課件出示問題-——喚醒舊知
2、探究新知——PPT課件——突破重點、分解難點
3、拓展延伸
【教學過程】:
一、聯(lián)系舊知,質(zhì)疑引思。
1、在自然數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的自然數(shù)嗎?
2、在小數(shù)的范圍內(nèi),可以找到兩個大小相等但各個數(shù)位上數(shù)字又都不相同的小數(shù)嗎?
3、在分數(shù)的范圍內(nèi),可以找到兩個大小相等但分子和分母又都不相同的分數(shù)嗎?
誰能說一個與《分數(shù)的基本性質(zhì)》教學設計
【喚醒學生已有知識經(jīng)驗而且引發(fā)學生的數(shù)學思考,為主動探究新知積聚動力。】
二、自主操作,驗證猜想
1、初步驗證
(1)提出問題
誰能說一個與《分數(shù)的基本性質(zhì)》教學設計
如果讓你證明他們確實和《分數(shù)的基本性質(zhì)》教學設計
。2)匯報方法
2、深入驗證:
。1)在紙上寫上一組你認為可能相等的分數(shù);
。2)用你喜歡的方法來證明。
。3)學生操作。
。4)匯報交流。
3、概括性質(zhì),深化理解
(1)在操作的過程中,你有什么發(fā)現(xiàn)?分子分母怎樣變化分數(shù)的大小才不變?
。2)歸納概括,總結(jié)規(guī)律,揭示課題。
。3)根據(jù)我們以前學過的分數(shù)與除法的關系,以及整數(shù)除法中商不變的性質(zhì),來說明分數(shù)的基本性質(zhì)嗎?
4、運用規(guī)律,完成例2。
。1)理解題意
。2)要把他們化成分母是12而大小不變的分數(shù),分子應該怎么變化?變化的根據(jù)是什么?
。3)獨立完成,交流匯報
【給學生提供開放的探究空間,滿足學生的探索欲望!
三、知識應用,鞏固提升
1、判斷
。1)分數(shù)的分子、分母同時乘以或除以一個數(shù),分數(shù)的大小不變。
(2)兩個分數(shù)的分子、分母都不相同,這兩個分數(shù)一定不相等。
。3)《分數(shù)的基本性質(zhì)》教學設計
2、五年級有《分數(shù)的基本性質(zhì)》教學設計
3、把《分數(shù)的基本性質(zhì)》教學設計
才能使分數(shù)的大小不變?
四、回顧總結(jié),完善認知
通過本節(jié)課的學習,你有什么收獲?
【教學反思】:
1、課前準備不足,我用的20xx版做的,結(jié)果上課電腦是xxxx年版本的,展臺沒有試,影響教學流程。
2、教學機智不足,沒有關注學情,總想到20分鐘的課,時間短,有些趕,知識落實不夠扎實。
3、課堂提問語言不夠準確精煉,課堂評價不夠豐富、準確。例如開課語及結(jié)束語言有歧義。
【分數(shù)的基本性質(zhì)教學設計】相關文章:
分數(shù)基本性質(zhì)教學設計02-15
《分數(shù)基本性質(zhì)》教學設計(15篇)04-04
分數(shù)的基本性質(zhì)教學設計(15篇)04-05
分數(shù)的基本性質(zhì)教學設計(精選15篇)10-23