97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

《勾股定理》教學(xué)設(shè)計(jì)

時(shí)間:2024-07-23 16:40:19 設(shè)計(jì) 我要投稿

《勾股定理》教學(xué)設(shè)計(jì)

  作為一位不辭辛勞的人民教師,時(shí)常需要準(zhǔn)備好教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)以計(jì)劃和布局安排的形式,對(duì)怎樣才能達(dá)到教學(xué)目標(biāo)進(jìn)行創(chuàng)造性的決策,以解決怎樣教的問(wèn)題。那么問(wèn)題來(lái)了,教學(xué)設(shè)計(jì)應(yīng)該怎么寫?以下是小編幫大家整理的《勾股定理》教學(xué)設(shè)計(jì),希望對(duì)大家有所幫助。

《勾股定理》教學(xué)設(shè)計(jì)

《勾股定理》教學(xué)設(shè)計(jì)1

  教學(xué)目標(biāo):

  理解并掌握勾股定理及其證明。 在學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合和從特殊到一般的思想。 通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神

  重點(diǎn)

  探索和證明勾股定理。

  難點(diǎn)

  用拼圖方法證明勾股定理。

  教學(xué)準(zhǔn)備:

  教具

  多媒體課件。

  學(xué)具

  剪刀和邊長(zhǎng)分別為a、b的.兩個(gè)連體正方形紙片。

  教學(xué)流程安排

  活動(dòng)流程圖 活動(dòng)內(nèi)容和目的

  活動(dòng)1 創(chuàng)設(shè)情境→激發(fā)興趣 通過(guò)對(duì)趙爽弦圖的了解,激發(fā)起學(xué)生對(duì)勾股定理的探索興趣。

  活動(dòng)2 觀察特例→發(fā)現(xiàn)新知 通過(guò)問(wèn)題激發(fā)學(xué)生好奇、探究和主動(dòng)學(xué)習(xí)的欲望。

  活動(dòng)3 深入探究→交流歸納 觀察分析方格圖,得出直角三角形的性質(zhì)——勾股定理,發(fā)展學(xué)生分析問(wèn)題的能力。

  活動(dòng)4 拼圖驗(yàn)證→加深理解 通過(guò)剪拼趙爽弦圖證明勾股定理,體會(huì)數(shù)形結(jié)合思想,激發(fā)探索精神。

  活動(dòng)5 實(shí)踐應(yīng)用→拓展提高 初步應(yīng)用所學(xué)知識(shí),加深理解。

  活動(dòng)6 回顧小結(jié)→整體感知 回顧、反思、交流。

  活動(dòng)7 布置作業(yè)→鞏固加深 鞏固、發(fā)展提高。

《勾股定理》教學(xué)設(shè)計(jì)2

  一、教案背景概述:

  教材分析: 勾股定理是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角的"形"的特點(diǎn),轉(zhuǎn)化為三邊之間的"數(shù)"的關(guān)系,它是數(shù)形結(jié)合的典范。它可以解決許多直角三角形中的計(jì)算問(wèn)題,它是直角三角形特有的性質(zhì),是初中數(shù)學(xué)教學(xué)內(nèi)容重點(diǎn)之一。本節(jié)課的重點(diǎn)是發(fā)現(xiàn)勾股定理,難點(diǎn)是說(shuō)明勾股定理的正確性。

  學(xué)生分析:1、考慮到三角尺學(xué)生天天在用,較為熟悉,但真正能仔細(xì)研究過(guò)三角尺的同學(xué)并不多,通過(guò)這樣的情景設(shè)計(jì),能非常簡(jiǎn)單地將學(xué)生的注意力引向本節(jié)課的本質(zhì)。2、以與勾股定理有關(guān)的人文歷史知識(shí)為背景展開(kāi)對(duì)直角三角形三邊關(guān)系的討論,能激發(fā)學(xué)生的學(xué)習(xí)興趣。

  設(shè)計(jì)理念:本教案以學(xué)生手中舞動(dòng)的三角尺為知識(shí)背景展開(kāi),以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終, 讓學(xué)生對(duì)勾股定理的發(fā)展過(guò)程有所了解,讓他們感受勾股定理的豐富文化內(nèi)涵,體驗(yàn)勾股定理的探索和運(yùn)用過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,特別是通過(guò)向?qū)W生介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。

  教學(xué)目標(biāo):

  1、 經(jīng)歷用面積割、補(bǔ)法探索勾股定理的過(guò)程,培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體現(xiàn)數(shù)形結(jié)合思想。

  2、 經(jīng)歷用多種割、補(bǔ)圖形的方法驗(yàn)證勾股定理的.過(guò)程,發(fā)展用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界和有條理地思考能力以及語(yǔ)言表達(dá)能力等,感受勾股定理的文化價(jià)值。

  3、 培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和愛(ài)國(guó)熱情。

  4、 欣賞設(shè)計(jì)圖形美。

  二、教案運(yùn)行描述:

  教學(xué)準(zhǔn)備階段:

  學(xué)生準(zhǔn)備:正方形網(wǎng)格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。

  老師準(zhǔn)備:畢達(dá)哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關(guān)人物歷史資料等投影圖片。

  三、教學(xué)流程:

 。ㄒ唬┮

  同學(xué)們,當(dāng)你每天手握三角尺繪制自己的宏偉藍(lán)圖時(shí),你是否想過(guò):他們的邊有什么關(guān)系呢?今天我們來(lái)探索這一小秘密。(板書(shū)課題:探索直角三角形三邊關(guān)系)

  (二)實(shí)驗(yàn)探究

  1、取方格紙片,在上面先設(shè)計(jì)任意格點(diǎn)直角三角形,再以它們的每一邊分別向三角形外作正方形,如圖1

  設(shè)網(wǎng)格正方形的邊長(zhǎng)為1,直角三角形的直角邊分別為a、b ,斜邊為c ,觀察并計(jì)算每個(gè)正方形的面積,以四人小組為單位填寫下表:

  (討論難點(diǎn):以斜邊為邊的正方形的面積找法)

  交流后得出一般結(jié)論: (用關(guān)于a、b、c的式子表示)

 。ㄈ┨剿魉媒Y(jié)論的正確性

  當(dāng)直角三角形的直角邊分別為a 、b,斜邊為c時(shí), 是否一定成立?

  1、指導(dǎo)學(xué)生運(yùn)用拼圖、或正方形網(wǎng)格紙構(gòu)造或設(shè)計(jì)合理分割(或補(bǔ)全)圖形,去探索本結(jié)論的正確性:(以四人小組為單位進(jìn)行)

  在學(xué)生所創(chuàng)作圖形中選擇有代表性的割、補(bǔ)圖,展示出來(lái)交流講解,并引導(dǎo)學(xué)生進(jìn)行說(shuō)理:

  如圖2(用補(bǔ)的方法說(shuō)明)

  師介紹:(出示圖片)畢達(dá)哥拉斯,公元前約500年左右,古西臘一位哲學(xué)家、數(shù)學(xué)家。一天,他應(yīng)邀到一位朋友家做客,他一進(jìn)朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來(lái)尺子和筆又量又畫(huà),他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對(duì)角線為邊向形外作正方形的面積。于是他回到家里立刻對(duì)他的這一發(fā)現(xiàn)進(jìn)行了探究證明……,終獲成功。后來(lái)西方人們?yōu)榱思o(jì)念他的這一發(fā)現(xiàn),將這一定理命名為"畢達(dá)哥拉斯定理"。1952年,希臘政府為了紀(jì)念這位偉大的數(shù)學(xué)家,特別選用他設(shè)計(jì)的這種圖形為主圖發(fā)行了一枚紀(jì)念郵票。(見(jiàn)課本52頁(yè)彩圖2—1,欣賞圖片)

  如圖3(用割的方法去探索)

  師介紹: (出示圖片) 中國(guó)古代數(shù)學(xué)家們很早就發(fā)現(xiàn)并運(yùn)用這個(gè)結(jié)論。早在公元前20xx年左右,大禹治水時(shí)期,就曾經(jīng)用過(guò)此方法測(cè)量土地的等高差,公元前1100年左右,西周的數(shù)學(xué)家商高就曾用"勾三、股四、弦五"測(cè)量土地,他們對(duì)這一結(jié)論的運(yùn)用至少比古希臘人早500多年。公元200年左右,三國(guó)時(shí)期吳國(guó)數(shù)學(xué)家趙爽曾構(gòu)造此圖驗(yàn)證了這一結(jié)論的正確性。他的這個(gè)證明,可謂別具匠心,極富創(chuàng)新意識(shí),他用幾何圖形的割、來(lái)證明代數(shù)式之間的相等關(guān)系,既嚴(yán)密,又直觀,為中國(guó)古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨(dú)特風(fēng)格樹(shù)立了一個(gè)典范。他是我國(guó)有記載以來(lái)第一個(gè)證明這一結(jié)論的數(shù)學(xué)家。我國(guó)數(shù)學(xué)家們?yōu)榱思o(jì)念我國(guó)在這方面的數(shù)學(xué)成就,將這一結(jié)論命名為"勾股定理"。(點(diǎn)題)

  20xx年,世界數(shù)學(xué)家大會(huì)在中國(guó)北京召開(kāi),當(dāng)時(shí)選用這個(gè)圖案作為會(huì)場(chǎng)主圖,它標(biāo)志著我國(guó)古代數(shù)學(xué)的輝煌成就。(見(jiàn)課本50頁(yè)彩圖,欣賞圖片)

  如圖4(構(gòu)造新圖形的方法去探索)

  師介紹:(出示圖片)勾股定理是數(shù)學(xué)史上的一顆璀璨明珠,它的證明在數(shù)學(xué)史上屢創(chuàng)奇跡,從畢達(dá)哥拉斯到現(xiàn)在,吸引著世界上無(wú)數(shù)的數(shù)學(xué)家、物理學(xué)家、數(shù)學(xué)愛(ài)好者對(duì)它的探究,甚至政界要人——美國(guó)第20任總統(tǒng)加菲爾德,也加入到對(duì)它的探索證明中,如圖是他當(dāng)年設(shè)計(jì)的證明方法。據(jù)說(shuō)至今已經(jīng)找到的證明方法有四百多種,且每年還會(huì)有所增加。(若有時(shí)間可以繼續(xù)出示學(xué)生中有價(jià)值的圖片進(jìn)行討論),有興趣的同學(xué)課后可以繼續(xù)探索……

  四、總結(jié):

  本節(jié)課學(xué)習(xí)的勾股定理用語(yǔ)言敘說(shuō)為:

  五、作業(yè):

  1、繼續(xù)收集、整理有關(guān)勾股定理的證明方的探索問(wèn)題并交流。

  2、探索勾股定理的運(yùn)用。

《勾股定理》教學(xué)設(shè)計(jì)3

  教學(xué)目標(biāo)

  1、知識(shí)與技能目標(biāo)

  學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念、

  2、過(guò)程與方法

  (1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力、

 。2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想、

  3、情感態(tài)度與價(jià)值觀

 。1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣、

 。2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性、

  教學(xué)重點(diǎn):

  探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題、

  教學(xué)難點(diǎn):

  利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題、

  教學(xué)準(zhǔn)備:

  多媒體課件

  教學(xué)過(guò)程:

  第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)

  情景:

  如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)

  食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于

  是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

  第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)

  學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算、

  學(xué)生匯總了四種方案:

 。ǎ保ǎ玻

  學(xué)生很容易算出:情形(1)中A→B的路線長(zhǎng)為:AA’+d,

  情形(2)中A→B的`路線長(zhǎng)為:AA’+πd/2

  所以情形(1)的路線比情形(2)要短、

  學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開(kāi)圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點(diǎn)之間線段最短可判斷(4)最短、

  如圖:

 。ǎ保┲蠥→B的路線長(zhǎng)為:AA’+d;

 。ǎ玻┲蠥→B的路線長(zhǎng)為:AA’+A’B>AB;

 。ǎ常┲蠥→B的路線長(zhǎng)為:AO+OB>AB;

 。ǎ矗┲蠥→B的路線長(zhǎng)為:AB。

  得出結(jié)論:利用展開(kāi)圖中兩點(diǎn)之間,線段最短解決問(wèn)題、

  在這個(gè)環(huán)節(jié)中,可讓學(xué)生沿母線剪開(kāi)圓柱體,具體觀察、

  接下來(lái)后提問(wèn):怎樣計(jì)算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12cm,底面半徑為3cm,π取3,則。

  第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)

  教材23頁(yè)

  李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

 。1)你能替他想辦法完成任務(wù)嗎?

 。2)李叔叔量得AD長(zhǎng)是30厘米,AB長(zhǎng)是40厘米,BD長(zhǎng)是50厘米,AD邊垂直于AB邊嗎?為什么?

  (3)小明隨身只有一個(gè)長(zhǎng)度為20厘米的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)

  1、甲、乙兩位探險(xiǎn)者到沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6km/h的速度向正東行走,1小時(shí)后乙出發(fā),他以5km/h的速度向正北行走、上午10:00,甲、乙兩人相距多遠(yuǎn)?

  2、如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離、

  3、有一個(gè)高為1。5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0。5米,問(wèn)這根鐵棒有多長(zhǎng)?

  第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問(wèn)答)

  內(nèi)容:

  1、如何利用勾股定理及逆定理解決最短路程問(wèn)題?

  第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)

  內(nèi)容:

  作業(yè):1、課本習(xí)題1、5第1,2,3題、

  要求:A組(學(xué)優(yōu)生):1、2、3

  B組(中等生):1、2

  C組(后三分之一生):1

《勾股定理》教學(xué)設(shè)計(jì)4

  一、教材分析:

 。ㄒ唬┍竟(jié)內(nèi)容在全書(shū)和章節(jié)的地位

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(華東版),八年級(jí)第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和觀察分析問(wèn)題的能力;通過(guò)實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。

 。ǘ┤S教學(xué)目標(biāo):

  1、理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運(yùn)用勾股定理及其計(jì)算;

  2、通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

  在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。

  通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)和熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。

 。ㄈ┙虒W(xué)重點(diǎn)、難點(diǎn):

  勾股定理的證明與運(yùn)用

  用面積法等方法證明勾股定理

  對(duì)于勾股定理的得出,首先需要學(xué)生通過(guò)動(dòng)手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識(shí),但學(xué)生在這一方面的可預(yù)見(jiàn)性和耐挫折能力并不是很成熟,從而形成困難。

  1、創(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動(dòng)、啟發(fā)性的問(wèn)題情景,激發(fā)學(xué)生的問(wèn)題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過(guò)程;

  2、自主探索,敢于猜想:充分讓自己動(dòng)手操作,大膽猜想數(shù)學(xué)問(wèn)題的結(jié)論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;

  3、張揚(yáng)個(gè)性,展示風(fēng)采:實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書(shū)記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺(tái)利用“多媒體視頻展示臺(tái)”展示本組的優(yōu)秀作品,其他小組給予評(píng)價(jià)。這樣既保證討論的有效性,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。

  二、教法與學(xué)法分析

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對(duì)初二年級(jí)學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景—?jiǎng)邮植僮鳌獨(dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)”六個(gè)方面。

  新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過(guò)程設(shè)計(jì)

  (一)創(chuàng)設(shè)情景

  多媒體課件演示FLASH小動(dòng)畫(huà)片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6。5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2。5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  問(wèn)題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,求第三邊?”的問(wèn)題。學(xué)生會(huì)感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。這種以實(shí)際問(wèn)題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來(lái)源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

 。ǘ﹦(dòng)手操作

  1、課件出示課本P99圖19、2、1:

  觀察圖中用陰影畫(huà)出的三個(gè)正方形,你從中能夠得出什么結(jié)論?

  學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過(guò)正方形的面積之間的關(guān)系發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  2、緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的.直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19、2、2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫(huà)出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。

  3、再問(wèn):當(dāng)邊長(zhǎng)不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長(zhǎng)分別為1、5,3、6,3、9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會(huì)到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

  (三)歸納驗(yàn)證

  通過(guò)動(dòng)手操作、合作交流,探索邊長(zhǎng)為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長(zhǎng)為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過(guò)程中感受學(xué)數(shù)學(xué)的樂(lè)趣,,使學(xué)生學(xué)會(huì)“文字語(yǔ)言”與“數(shù)學(xué)語(yǔ)言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問(wèn)題。

  先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫(huà)圖、剪圖、拼圖,還有測(cè)量、計(jì)算等活動(dòng),使學(xué)生從中體會(huì)到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過(guò)程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。

  (四)問(wèn)題解決

  1、讓學(xué)生解決開(kāi)始上課前所提出的問(wèn)題,前后呼應(yīng),讓學(xué)生體會(huì)到成功的快樂(lè)。

  2、自學(xué)課本P101例1,然后完成P102練習(xí)。

  (五)課堂小結(jié)1、小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識(shí)的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。2、教師用多媒體介紹“勾股定理史話”

  ①《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

  ②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。

  目的是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)學(xué)生奮發(fā)向上。

  (六)布置作業(yè):課本P104習(xí)題19、2中的第1、2、3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。

  以上內(nèi)容,我僅從“說(shuō)教材”,“說(shuō)學(xué)情”、“說(shuō)教法”、“說(shuō)學(xué)法”、“說(shuō)教學(xué)過(guò)程”上來(lái)說(shuō)明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對(duì)本次說(shuō)課提出寶貴的意見(jiàn),謝謝!

  《勾股定理》優(yōu)秀說(shuō)課稿3

  一、教材分析:

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。

  教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  二、教學(xué)重點(diǎn):

  勾股定理的證明和應(yīng)用。

  三、教學(xué)難點(diǎn):

  勾股定理的證明。

  四、教法和學(xué)法:

  教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

  以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。

  切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

  通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  五、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

  (一)創(chuàng)設(shè)情境以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4。那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。

  3、板書(shū)課題,出示學(xué)習(xí)目標(biāo)。

 。ǘ┏醪礁兄斫饨滩

  教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

 。ㄈ┵|(zhì)疑解難、討論歸納:

  1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

  (1)這兩個(gè)圖形有什么特點(diǎn)?

  (2)你能寫出這兩個(gè)圖形的面積嗎?

 。3)如何運(yùn)用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。

 。ㄋ模╈柟叹毩(xí)強(qiáng)化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

 。ㄎ澹w納總結(jié)練習(xí)反饋

  引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂(lè)學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

《勾股定理》教學(xué)設(shè)計(jì)5

  一、教材分析

  勾股定理是直角三角形的一條非常重要的性質(zhì),也是幾何中最重要的定理之一,它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,主要用于解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”是這本書(shū)所體現(xiàn)的主要思想,教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

  二、學(xué)習(xí)目標(biāo)與任務(wù)

  1、學(xué)習(xí)目標(biāo)描述(知識(shí)與技能、過(guò)程與方法、情感態(tài)度與價(jià)值觀)

 。1)知識(shí)與技能目標(biāo):理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  (2)過(guò)程與方法目標(biāo):通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

 。3)情感、態(tài)度與價(jià)值觀目標(biāo):了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛(ài)國(guó)熱情;學(xué)生通過(guò)自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

  2、學(xué)習(xí)內(nèi)容與學(xué)習(xí)任務(wù)說(shuō)明(學(xué)習(xí)內(nèi)容的選擇、學(xué)習(xí)形式的確定、學(xué)習(xí)結(jié)果的描述、學(xué)習(xí)重點(diǎn)及難點(diǎn)的分析)

  學(xué)習(xí)內(nèi)容:勾股定理的證明和運(yùn)用

  學(xué)習(xí)形式:課堂教學(xué),小組合作

  學(xué)習(xí)結(jié)果:學(xué)生能夠掌握勾股定理的證明并熟練運(yùn)用勾股定理解決相關(guān)問(wèn)題

  學(xué)習(xí)難點(diǎn):用面積法方法證明勾股定理。

  學(xué)習(xí)重點(diǎn):引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的.過(guò)程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  3、問(wèn)題設(shè)計(jì)(能激發(fā)學(xué)生在教學(xué)活動(dòng)中思考所學(xué)內(nèi)容的問(wèn)題)

 。1)圖中三個(gè)三角形有什么關(guān)系?

 。2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  三、學(xué)習(xí)者特征分析(說(shuō)明學(xué)生的學(xué)習(xí)特點(diǎn)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)交往特點(diǎn)等)

  (1)學(xué)習(xí)特點(diǎn):易受外界影響﹑情緒情感偏激﹑情緒兩極波動(dòng)﹑憑感情行事,但同時(shí)又具有可塑性大﹑主動(dòng)嘗試的特點(diǎn),八年級(jí)的學(xué)生是成長(zhǎng)發(fā)展的轉(zhuǎn)折點(diǎn),也是教育的關(guān)鍵期。

 。2)學(xué)習(xí)習(xí)慣:八年級(jí)是初中生活開(kāi)始分化的時(shí)期,經(jīng)過(guò)一年多新課程理念的熏陶和實(shí)踐,學(xué)生已經(jīng)有了初步自主學(xué)習(xí)和合作探究的能力。

  (3)學(xué)習(xí)交往特點(diǎn):經(jīng)過(guò)一年的學(xué)習(xí)生活,環(huán)境熟悉了,人也熟悉了,但部分同學(xué)還是羞于表現(xiàn)但又渴望得到肯定。

  四、學(xué)習(xí)環(huán)境選擇與學(xué)習(xí)資源設(shè)計(jì)

  1、學(xué)習(xí)環(huán)境選擇(打√)

  校園網(wǎng)√

  因特網(wǎng)

  手機(jī)

  2、學(xué)習(xí)資源類型(打√)

  (1)課件√

 。2)工具

 。3)專題學(xué)習(xí)網(wǎng)站

 。4)多媒體資源庫(kù)

 。5)案例庫(kù)

 。6)題庫(kù)

 。7)網(wǎng)絡(luò)課程

 。8)寧夏教育云平臺(tái)

  (9)其他

  3、學(xué)習(xí)資源內(nèi)容簡(jiǎn)要說(shuō)明(說(shuō)明名稱、網(wǎng)址、主要內(nèi)容)

  五、學(xué)習(xí)情境創(chuàng)設(shè)

  1、學(xué)習(xí)情境類型(打√)

 。1)真實(shí)情境√

 。2)問(wèn)題性情境√

 。3)虛擬情境

  (4)其他

  2、學(xué)習(xí)情境設(shè)計(jì)

  通過(guò)真實(shí)的教學(xué)情境,讓學(xué)生能夠真實(shí)感受課堂氛圍,通過(guò)提問(wèn),來(lái)激發(fā)學(xué)生的思考和想象,引導(dǎo)學(xué)生對(duì)新課程內(nèi)容進(jìn)行探究,加深學(xué)生的理解和記憶。

  六、學(xué)習(xí)活動(dòng)組織

  1、自主學(xué)習(xí)設(shè)計(jì)

  類型

  相應(yīng)內(nèi)容

  使用資源

  學(xué)生活動(dòng)

  教師活動(dòng)

  自主觀察

  圖片

  課件

  觀察圖片

  播放圖片

  自主探究

  回答問(wèn)題

  課件

  討論并回答啊問(wèn)題

  提出問(wèn)題

  2、協(xié)作學(xué)習(xí)設(shè)計(jì)

  類型

  相應(yīng)內(nèi)容

  使用資源

  學(xué)生活動(dòng)

  教師活動(dòng)

 。1)伙伴

  小組討論

  課件

  討論探究

  提出問(wèn)題并引導(dǎo)

 。2)協(xié)同

 。3)辯論

 。4)角色扮演

  (5)其他

  3、教學(xué)結(jié)構(gòu)流程的設(shè)計(jì)

  通過(guò)圖片導(dǎo)入課程——提出問(wèn)題引入勾股定理新內(nèi)容——問(wèn)題解決進(jìn)入新課——通過(guò)例子驗(yàn)證勾股定理——得出勾股定理——通過(guò)習(xí)題鞏固所學(xué)——對(duì)課堂進(jìn)行小結(jié)——布置課后作業(yè)進(jìn)一步加強(qiáng)鞏固

  七、教學(xué)過(guò)程

  教學(xué)環(huán)節(jié)

  教師活動(dòng)

  學(xué)生活動(dòng)

  設(shè)計(jì)意圖

  情景導(dǎo)入

  播放圖片

  觀察圖片欣賞數(shù)學(xué)的美

  讓學(xué)生感受勾股定理的文化之美

  學(xué)習(xí)新課

  講解勾股定理

  認(rèn)真聽(tīng)老師講解

  讓學(xué)生學(xué)會(huì)勾股定理的證明和運(yùn)用

  鞏固練習(xí)

  提出問(wèn)題

  根據(jù)所學(xué)解決問(wèn)題

  讓學(xué)生熟練運(yùn)用勾股定理

  小結(jié)

  總結(jié)本節(jié)課所學(xué)內(nèi)容,提問(wèn)

  根據(jù)老師的提問(wèn)回答問(wèn)題

  讓學(xué)生鞏固本節(jié)課所學(xué)的知識(shí)

  作業(yè)

  布置作業(yè)

  記錄作業(yè)并認(rèn)真完成

  讓學(xué)生通過(guò)練習(xí)對(duì)本節(jié)課內(nèi)容更加熟悉

  八、學(xué)習(xí)評(píng)價(jià)設(shè)計(jì)

  1、測(cè)試形式與工具(打√)

 。1)課堂提問(wèn)√

  (2)書(shū)面練習(xí)√

 。3)達(dá)標(biāo)測(cè)試

 。4)學(xué)生自主網(wǎng)上測(cè)試

  (5)合作完成作品

 。6)其他

  2、測(cè)試內(nèi)容

  課堂練習(xí)

  課后作業(yè)

  九、板書(shū)設(shè)計(jì)

  勾股定理

  證明:

  設(shè)等腰直角三角形的直角邊長(zhǎng)為a,斜邊長(zhǎng)為b

  藍(lán)色部分面積為:a2

  +

  a2

  橙色部分面積為:b2

  已知藍(lán)色面積=橙色面積

  所以a2+a2=b2

  勾股定理:

  如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2

  十、教學(xué)反思

  成功之處:

  1、在上課的起始放出圖片引起學(xué)生的學(xué)習(xí)興趣,為新授課做準(zhǔn)備。

  2、讓學(xué)生觀察圖片,找出數(shù)學(xué)信息,以問(wèn)題引出新課,學(xué)習(xí)完新課后讓學(xué)生回頭解決最開(kāi)始的問(wèn)題

  3、鼓勵(lì)學(xué)生運(yùn)用多種方法解釋圖中的面積問(wèn)題,并引導(dǎo)學(xué)生靠近勾股定理。

  不足之處: .

  1、在圖片引導(dǎo)新課的時(shí)候只是單純地讓學(xué)生看,沒(méi)有提問(wèn)他們看到了什么。

  2、證明過(guò)程講解沒(méi)有讓學(xué)生嘗試證明。

  需要改進(jìn)的地方:

  1、認(rèn)真鉆研教材,把握教材中各個(gè)環(huán)節(jié)之間的關(guān)系,比如說(shuō),本節(jié)課需要著重把勾股定理的證明進(jìn)行講解,學(xué)生通過(guò)探索和老師的引導(dǎo)得出勾股定理。

  2、需學(xué)習(xí)提問(wèn)的技巧,爭(zhēng)取做到提出一個(gè)問(wèn)題之后,學(xué)生能馬上明白老師的用意。

  備注:此表頁(yè)碼不夠可以增加,須排版整潔、美觀。

《勾股定理》教學(xué)設(shè)計(jì)6

  一。教學(xué)目標(biāo)

 。ㄒ唬┲R(shí)點(diǎn)

  1。體驗(yàn)勾股定理的探索過(guò)程,由特例猜想勾股定理,再由特例驗(yàn)證勾股定理。

  2。會(huì)利用勾股定理解釋生活中的簡(jiǎn)單現(xiàn)象。

 。ǘ┠芰τ(xùn)練要求

  1。在學(xué)生充分觀察、歸納、猜想、探索勾股定理的過(guò)程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。

  2。在探索勾股定理的過(guò)程中,發(fā)展學(xué)生歸納、概括和有條理地表達(dá)活動(dòng)過(guò)程及結(jié)論的能力。

  (三)情感與價(jià)值觀要求

  1。培養(yǎng)學(xué)生積極參與、合作交流的意識(shí)。

  2。在探索勾股定理的過(guò)程中,體驗(yàn)獲得成功的快樂(lè),鍛煉學(xué)生克服困難的勇氣。

  二。教學(xué)重、難點(diǎn)

  重點(diǎn):探索和驗(yàn)證勾股定理。

  難點(diǎn):在方格紙上通過(guò)計(jì)算面積的方法探索勾股定理。

  三。教學(xué)方法

  交流探索猜想。

  在方格紙上,同學(xué)們通過(guò)計(jì)算以直角三角形的.三邊為邊長(zhǎng)的三個(gè)正方形的面積,在合作交流的過(guò)程中,比較這三個(gè)正方形的面積,由此猜想出直角三角形的三邊關(guān)系。

  四。教具準(zhǔn)備

  1。學(xué)生每人課前準(zhǔn)備若干張方格紙。

  2。投影片三張:

  第一張:填空(記作1.1.1 A);

  第二張:?jiǎn)栴}串(記作1.1.1 B);

  第三張:做一做(記作1.1.1 C)。

  五。教學(xué)過(guò)程

  Ⅰ。創(chuàng)設(shè)問(wèn)題情境,引入新課

  出示投影片(1.1.1 A)

 。1)三角形按角分類,可分為_(kāi)________、_________、_________。

  (2)對(duì)于一般的三角形來(lái)說(shuō),判斷它們?nèi)鹊臈l件有哪些?對(duì)于直角三角形呢?

 。3)有兩個(gè)直角三角形,如果有兩條邊對(duì)應(yīng)相等,那么這兩個(gè)直角三角形一定全等嗎?

《勾股定理》教學(xué)設(shè)計(jì)7

  教材分析

  1.勾股定理的逆定理是研究特殊三角形——直角三角形的一種判定方法,體現(xiàn)了數(shù)形結(jié)合的思想。

  2.通過(guò)勾股定理與它的逆定理的學(xué)習(xí),加深了學(xué)生對(duì)性質(zhì)與判定之間辨證統(tǒng)一關(guān)系的認(rèn)識(shí)。

  3. 完善了知識(shí)結(jié)構(gòu),為后繼學(xué)習(xí)打下基礎(chǔ)。

  學(xué)情分析

  初中生已經(jīng)具備一定的獨(dú)立思考和探索能力,并能在探索過(guò)程中形成自已的觀點(diǎn),能在傾聽(tīng)別人意見(jiàn)的過(guò)程中逐漸完善自已的想法,而且本班學(xué)生比較上進(jìn),思維活躍,愿意表達(dá)自已的見(jiàn)解,有一定的互動(dòng)互助基礎(chǔ)。

  教學(xué)目標(biāo)

  1.知識(shí)與技能:

 。1)理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

 。2)掌握勾股定理的`逆定理,并能應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。

  2.過(guò)程與方法

  (1)通過(guò)對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成過(guò)程。

 。2)通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合方法的應(yīng)用。

  (3)通過(guò)對(duì)勾股定理的逆定理的證明,體會(huì)數(shù)形結(jié)合方法在問(wèn)題解決中的作用,并能應(yīng)用勾股定理的逆定理來(lái)解決相關(guān)問(wèn)題。

  3.情感態(tài)度

 。1)通過(guò)用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧與辨證統(tǒng)一的關(guān)系

 。2)在探索勾股定理的逆定理的活動(dòng)中,通過(guò)一系列的富有探究性的問(wèn)題,滲透與他人交流、合作的意識(shí)和探究精神。

  教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):勾股定理的逆定理及起應(yīng)用

  教學(xué)難點(diǎn):勾股定理的逆定理的證明

《勾股定理》教學(xué)設(shè)計(jì)8

  一、教學(xué)任務(wù)分析

  勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)!20xx版數(shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:

  1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;

  2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;

  3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;

  4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  本節(jié)《勾股定理的應(yīng)用》是北師大版八年級(jí)數(shù)學(xué)上冊(cè)第一章《勾股定理》第3節(jié)、具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題、在這些具體問(wèn)題的解決過(guò)程中,需要經(jīng)歷幾何圖形的抽象過(guò)程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題能力和應(yīng)用意識(shí);有些探究活動(dòng)具有一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力、

  本節(jié)課的教學(xué)目標(biāo)是:

  1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。

  2、經(jīng)歷實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的過(guò)程,學(xué)會(huì)選擇適當(dāng)?shù)臄?shù)學(xué)模型解決實(shí)際問(wèn)題,提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力并體會(huì)數(shù)學(xué)建模的思想、

  教學(xué)重點(diǎn)和難點(diǎn):

  應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。

  把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。

  二、教學(xué)設(shè)想

  根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境 ,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄,合作交流中分析?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。

  在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。

  三、教學(xué)過(guò)程分析

  本節(jié)課設(shè)計(jì)了七個(gè)環(huán) 《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)、

  第一環(huán)節(jié):情境引入

  情景1:復(fù)習(xí)提 問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?

  設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)

  數(shù)學(xué)的 嚴(yán)謹(jǐn)性和規(guī)范性!豆垂啥ɡ淼膽(yīng)用》教學(xué)設(shè)計(jì)情景2: 腦筋急轉(zhuǎn)彎一個(gè)三角形的兩條邊是3和4,第三邊是多少?

  設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。

  第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)

  情景3:課本引例(螞蟻怎樣走最近)

  設(shè)計(jì)意圖:從有趣的生活場(chǎng)景引入,學(xué)生探究熱情高漲,通過(guò)實(shí)際動(dòng)手操作,結(jié)合問(wèn)題逆向思考,或是回想兩點(diǎn)之間線段最短,通過(guò)合作交流將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型從而利用勾股定理解決,在活動(dòng)中體驗(yàn)數(shù)學(xué)建模,培養(yǎng)學(xué)生與人合作交流的能力,增強(qiáng)學(xué)生探究能力,操作能力,分析能力,發(fā)展空間觀念、

  第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)

  設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。

  第四環(huán)節(jié):議一議

  內(nèi)容:李叔叔想要檢測(cè)雕塑底座正面的`AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)(1)你能替他想辦法完成任務(wù)嗎?

 。2)李叔叔量得AD長(zhǎng)是30厘米,AB長(zhǎng)是40厘米,BD長(zhǎng)是50厘米,AD邊垂直于AB邊嗎?為什么?

 。3)小明隨身只有一個(gè)長(zhǎng)度為20厘米的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  設(shè)計(jì)意圖:

  運(yùn)用勾股定理逆定理來(lái)解決實(shí)際問(wèn)題,讓學(xué)生學(xué)會(huì)分析問(wèn)題,正確合理選擇數(shù)學(xué)模型,感受由數(shù)到形的轉(zhuǎn)化,利用允許的工具靈活處理問(wèn)題、

  第五環(huán)節(jié):方程與勾股定理

  在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多 少尺?《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國(guó)古代人民的聰明才智;學(xué)會(huì)運(yùn)用方程的思想借助勾股定理解決實(shí)際問(wèn)題。、

  第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):

  1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、

  2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題、

  3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。

  意圖:鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史、《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)第七環(huán)作業(yè)設(shè)計(jì):

  第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。

《勾股定理》教學(xué)設(shè)計(jì)9

  一、教學(xué)目標(biāo)

  1、讓學(xué)生通過(guò)對(duì)的圖形創(chuàng)造、觀察、思考、猜想、驗(yàn)證等過(guò)程,體會(huì)勾股定理的產(chǎn)生過(guò)程。

  2、通過(guò)介紹我國(guó)古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學(xué)生為祖國(guó)的復(fù)興努力學(xué)習(xí)。

  3、培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)、數(shù)學(xué)分析和數(shù)學(xué)推理證明的能力。

  二、教學(xué)重難點(diǎn)

  利用拼圖證明勾股定理

  三、學(xué)具準(zhǔn)備

  四個(gè)全等的直角三角形、方格紙、固體膠

  四、教學(xué)過(guò)程

  (一) 趣味涂鴉,引入情景

  教師:很多同學(xué)都喜歡在紙上涂涂畫(huà)畫(huà),今天想請(qǐng)大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

  (1)在邊長(zhǎng)為1的`方格紙上任意畫(huà)一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形。

  (2)再分別以這個(gè)三角形的三邊向三角形外作3個(gè)正方形。

  學(xué)生活動(dòng):先獨(dú)立完成,再在小組內(nèi)互相交流畫(huà)法,最后班級(jí)展示。

  (二)小組探究,大膽猜想

  教師:觀察自己所涂鴉的圖形,回答下列問(wèn)題:

  1、請(qǐng)求出三個(gè)正方形的面積,再說(shuō)說(shuō)這些面積之間具有怎樣的數(shù)量關(guān)系?

  2、圖中所畫(huà)的直角三角形的邊長(zhǎng)分別是多少?請(qǐng)根據(jù)面積之間的關(guān)系寫出邊長(zhǎng)之間存在的數(shù)量關(guān)系。

  3、與小組成員交流探究結(jié)果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關(guān)系?

  4、方法提煉:這種利用面積相等得出直角三角形三邊等量關(guān)系的方法叫做什么方法?

  學(xué)生活動(dòng):先獨(dú)立思考,再在小組內(nèi)互相交流探究結(jié)果,并猜想直角三角形的三邊關(guān)系,最后班級(jí)展示。

  (三)趣味拼圖,驗(yàn)證猜想

  教師:請(qǐng)利用四個(gè)全等的直角三角形進(jìn)行拼圖。

  1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

  2、能否就你拼出的圖形利用面積法說(shuō)明a2+b2=c2的合理性?如果可以,請(qǐng)寫下自己的推理過(guò)程。

  學(xué)生活動(dòng):獨(dú)立拼圖,并思考如何利用圖形寫出相應(yīng)的證明過(guò)程,再在組內(nèi)交流算法,最后在班級(jí)展示。

  (四)課堂訓(xùn)練 鞏固提升

  教師:請(qǐng)完成下列問(wèn)題,并上臺(tái)進(jìn)行展示。

  1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對(duì)邊分別為a,b,c

  已知a=6,b=8.求c.

  已知c=25,b=15.求a .

  已知c=9,a=3.求b.(結(jié)果保留根號(hào))

  學(xué)生活動(dòng):先獨(dú)立完成問(wèn)題,再組內(nèi)交流解題心得,最后上臺(tái)展示,其他小組幫助解決問(wèn)題。

  (五)課堂小結(jié),梳理知識(shí)

  教師:說(shuō)說(shuō)自己這節(jié)課有哪些收獲?請(qǐng)從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法、數(shù)學(xué)運(yùn)用等方向進(jìn)行總結(jié)。

《勾股定理》教學(xué)設(shè)計(jì)10

  教學(xué)目標(biāo)

  一、知識(shí)與技能

  1.掌握直角三角形的判別條件。

  2.熟記一些勾股數(shù)。

  3.掌握勾股定理的逆定理的探究方法。

  二、過(guò)程與方法

  1.用三邊的數(shù)量關(guān)系來(lái)判斷一個(gè)三角形是否為直角三角形,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。

  2.通過(guò)對(duì)Rt△判別條件的研究,培養(yǎng)學(xué)生大膽猜想,勇于探索的創(chuàng)新精神。

  三、情感態(tài)度與價(jià)值觀

  1.通過(guò)介紹有關(guān)歷史資料,激發(fā)學(xué)生解決問(wèn)題的愿望。

  2.通過(guò)對(duì)勾股定理逆定理的探究;培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和創(chuàng)新精神。

  教學(xué)重點(diǎn)探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關(guān)概念及關(guān)系.理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。

  教學(xué)難點(diǎn)理解勾股定理的逆定理的推導(dǎo)。

  教具準(zhǔn)備多媒體課件。

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)問(wèn)屬情境,引入新課

  活動(dòng)1

  (1)總結(jié)直角三角形有哪些性質(zhì)。

  (2)一個(gè)三角形,滿足什么條件是直角三角形?

  設(shè)計(jì)意圖:通過(guò)對(duì)前面所學(xué)知識(shí)的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個(gè)三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問(wèn)題的能力。

  師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶。

  本活動(dòng),教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極主動(dòng)地回憶,總結(jié)前面學(xué)過(guò)的舊知識(shí);②能否“溫故知新”。

  生:直角三角形有如下性質(zhì):

 。1)有一個(gè)角是直角;

 。2)兩個(gè)銳角互余;

  (3)兩直角邊的平方和等于斜邊的平方;

 。4)在含30°角的直角三角形中,30°的角所對(duì)的直角邊是斜邊的一半。

  師:那么,一個(gè)三角形滿足什么條件,才能是直角三角形呢?

  生:有一個(gè)內(nèi)角是90°,那么這個(gè)三角形就為直角三角形。

  生:如果一個(gè)三角形,有兩個(gè)角的和是90°,那么這個(gè)三角形也是直角三角形。

  師:前面我們剛學(xué)習(xí)了勾股定理,知道一個(gè)直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來(lái)判定它是否為直角三角形呢?我們來(lái)看一下古埃及人如何做?

  二、講授新課

  活動(dòng)2

  問(wèn)題:據(jù)說(shuō)古埃及人用下圖的方法畫(huà)直角:把一根長(zhǎng)蠅打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié),4個(gè)結(jié)、5個(gè)結(jié)的長(zhǎng)度為邊長(zhǎng),用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角。

  這個(gè)問(wèn)題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關(guān)系“32+42=52”。那么圍成的三角形是直角三角形。

  畫(huà)畫(huà)看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫(huà)出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.

  設(shè)計(jì)意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動(dòng)手操作能力和尋求解決數(shù)學(xué)問(wèn)題的一般方法。

  師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動(dòng)。教師參與此活動(dòng),并給學(xué)生以提示、啟發(fā)。在本活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極動(dòng)手參與;②能否從操作活動(dòng)中,用數(shù)學(xué)語(yǔ)言歸納、猜想出結(jié)論;③學(xué)生是否有克服困難的勇氣。

  生:我們不難發(fā)現(xiàn)上圖中,第(1)個(gè)結(jié)到第(4)個(gè)結(jié)是3個(gè)單位長(zhǎng)度即AC=3;同理BC=4,AB=5.因?yàn)?2+42=52。我們圍成的三角形是直角三角形。

  生:如果三角形的`三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過(guò)測(cè)量后,發(fā)現(xiàn)6.5cm的邊所對(duì)的角是直角,并且2.52+62=6.52.

  再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對(duì)的角是直角,且也有42+7.52=8.52.

  是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個(gè)直角三角形呢?

  活動(dòng)3下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c

  5,12,13;7,24,25;8,15,17。

 。1)這三組效都滿足a2+b2=c2嗎?

  (2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?

  設(shè)計(jì)意圖:本活動(dòng)通過(guò)讓學(xué)生按已知數(shù)據(jù)作出三角形,并測(cè)量三角形三個(gè)內(nèi)角的度數(shù)來(lái)進(jìn)一步獲得一個(gè)三角形是直角三角形的有關(guān)邊的條件。

  師生行為:學(xué)生進(jìn)一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅(jiān)信前面猜想出的結(jié)論。

  教師對(duì)學(xué)生歸納出的結(jié)論應(yīng)給予解釋,我們將在下一節(jié)給出證明.本活動(dòng)教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①對(duì)猜想出的結(jié)論是否還有疑慮;②能否積極主動(dòng)的操作,并且很有耐心。

  生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。

  師:很好,我們進(jìn)一步通過(guò)實(shí)際操作,猜想結(jié)論。

  命題2如果三角形的三邊長(zhǎng)a,b,c滿足a2+b2=c2那么這個(gè)三角形是直角三角形。

  同時(shí),我們也進(jìn)一步明白了古埃及人那樣做的道理.實(shí)際上,古代中國(guó)人也曾利用相似的方法得到直角,直至科技發(fā)達(dá)的今天。

《勾股定理》教學(xué)設(shè)計(jì)11

  教學(xué)目標(biāo)具體要求:

  1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問(wèn)題。

  2.過(guò)程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過(guò)程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

  3.情感態(tài)度與價(jià)值觀目標(biāo):通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過(guò)有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

  重點(diǎn):

  勾股定理的應(yīng)用

  難點(diǎn):

  勾股定理的應(yīng)用

  教案設(shè)計(jì)

  一、知識(shí)點(diǎn)講解

  知識(shí)點(diǎn)1:(已知兩邊求第三邊)

  1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為_(kāi)____________。

  2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是______________。

  3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長(zhǎng)?

  知識(shí)點(diǎn)2:

  利用方程求線段長(zhǎng)

  1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車站E,

 。1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?

 。2)DE與CE的位置關(guān)系

 。3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?

  利用方程解決翻折問(wèn)題

  2、如圖,用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?

  3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長(zhǎng)。

  4.如圖,將一個(gè)邊長(zhǎng)分別為4、8的矩形形紙片ABCD折疊,使C點(diǎn)與A點(diǎn)重合,則EF的長(zhǎng)是多少?

  5、折疊矩形ABCD的一邊AD,折痕為AE,且使點(diǎn)D落在BC邊上的點(diǎn)F處,已知AB=8cm,BC=10cm,以B點(diǎn)為原點(diǎn),BC為x軸,BA為y軸建立平面直角坐標(biāo)系。求點(diǎn)F和點(diǎn)E坐標(biāo)。

  6、邊長(zhǎng)為8和4的矩形OABC的兩邊分別在直角坐標(biāo)系的`x軸和y軸上,若沿對(duì)角線AC折疊后,點(diǎn)B落在第四象限B1處,設(shè)B1C交x軸于點(diǎn)D,求(1)三角形ADC的面積,(2)點(diǎn)B1的坐標(biāo),(3)AB1所在的直線解析式.

  知識(shí)點(diǎn)3:判斷一個(gè)三角形是否為直角三角形間接給出三邊的長(zhǎng)度或比例關(guān)系

  1.(1).若一個(gè)三角形的周長(zhǎng)12cm,一邊長(zhǎng)為3cm,其他兩邊之差為1cm,則這個(gè)三角形是___________。

 。2).將直角三角形的三邊擴(kuò)大相同的倍數(shù)后,得到的三角形是____________。

 。3)在ABC中,a:b:c=1:1:,那么ABC的確切形狀是_____________。

  2.如圖,正方形ABCD中,邊長(zhǎng)為4,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),CE=BC,你能說(shuō)明∠AFE是直角嗎?

  變式:如圖,正方形ABCD中,F(xiàn)為DC的中點(diǎn),E為BC上一點(diǎn),且CE=BC,你能說(shuō)明∠AFE是直角嗎?

  3.一位同學(xué)向西南走40米后,又走了50米,再走30米回到原地。問(wèn)這位同學(xué)又走了50米后向哪個(gè)方向走了

  二、課堂小結(jié)

  談一談你這節(jié)課都有哪些收獲?

  應(yīng)用勾股定理解決實(shí)際問(wèn)題

  三、課堂練習(xí)以上習(xí)題。

  四、課后作業(yè)卷子。

  本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過(guò)程;第二課時(shí)是通過(guò)例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過(guò)從實(shí)際問(wèn)題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問(wèn)題的意識(shí)和應(yīng)用能力。

  針對(duì)本班學(xué)生的特點(diǎn),學(xué)生知識(shí)水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個(gè)環(huán)節(jié):

  一、復(fù)習(xí)引入

  對(duì)上節(jié)課勾股定理內(nèi)容進(jìn)行回顧,強(qiáng)調(diào)易錯(cuò)點(diǎn)。由于學(xué)生的注意力集中時(shí)間較短,學(xué)生知識(shí)水平低,引入內(nèi)容簡(jiǎn)短明了,花費(fèi)時(shí)間短。

  二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法

  活動(dòng)一:用對(duì)媒體展示搬運(yùn)工搬木板的問(wèn)題,讓學(xué)生以小組交流合作,如何將木板運(yùn)進(jìn)門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書(shū)寫板書(shū)。整個(gè)活動(dòng)以學(xué)生為主體,教師及時(shí)的引導(dǎo)和強(qiáng)調(diào)。

  活動(dòng)二:解決例二梯子滑落的問(wèn)題。學(xué)生自主討論解決問(wèn)題,書(shū)寫過(guò)程,之后投影學(xué)生書(shū)寫過(guò)程,教師與學(xué)生一起合作修改解題過(guò)程。

  活動(dòng)三:學(xué)生討論總結(jié)如何將實(shí)際生活中的問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,然后利用勾股定理解決問(wèn)題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動(dòng)中發(fā)展了學(xué)生的探究意識(shí)和合作交流的習(xí)慣;體會(huì)勾股定理的應(yīng)用價(jià)值,讓學(xué)生體會(huì)到數(shù)學(xué)來(lái)源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過(guò)程中體會(huì)獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。

  二、鞏固練習(xí),熟練新知

  通過(guò)測(cè)量旗桿活動(dòng),發(fā)展學(xué)生的探究意識(shí),培養(yǎng)學(xué)生動(dòng)手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的經(jīng)驗(yàn)和感受。

  在教學(xué)設(shè)計(jì)的實(shí)施中,也存在著一些問(wèn)題:

  1.由于本班學(xué)生能力的差距,本想著通過(guò)學(xué)生幫帶活動(dòng),使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強(qiáng)的學(xué)生,對(duì)問(wèn)題的分析解決所用時(shí)間短,而在整個(gè)環(huán)節(jié)設(shè)計(jì)中轉(zhuǎn)接的快,未給學(xué)困生充分的時(shí)間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來(lái)。

  2.課堂上質(zhì)疑追問(wèn)要起到好處,不要增加學(xué)生展示的難度,影響展示進(jìn)程出現(xiàn)中斷或偏離主題的現(xiàn)象。

  3.對(duì)學(xué)生課堂展示的評(píng)價(jià)方式應(yīng)體現(xiàn)生評(píng)生,師評(píng)生,及評(píng)價(jià)的針對(duì)性和及時(shí)性。

【《勾股定理》教學(xué)設(shè)計(jì)】相關(guān)文章:

《勾股定理》教學(xué)設(shè)計(jì)10篇05-28

《勾股定理》教學(xué)設(shè)計(jì)11篇04-30

八年級(jí)數(shù)學(xué)下冊(cè)《勾股定理》教學(xué)設(shè)計(jì)09-15

勾股定理課后反思02-18

勾股定理評(píng)課稿05-17

勾股定理評(píng)課稿06-07

《杯子的設(shè)計(jì)》教學(xué)設(shè)計(jì)03-14

教學(xué)設(shè)計(jì)09-05

比的教學(xué)設(shè)計(jì)08-10