《圓柱的體積》教學(xué)設(shè)計(jì)集合15篇
作為一位優(yōu)秀的人民教師,總不可避免地需要編寫教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更好地組織教學(xué)活動(dòng)。怎樣寫教學(xué)設(shè)計(jì)才更能起到其作用呢?以下是小編整理的《圓柱的體積》教學(xué)設(shè)計(jì),歡迎大家分享。
《圓柱的體積》教學(xué)設(shè)計(jì)1
教學(xué)內(nèi)容:
青教版九年義務(wù)教育六年制小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)第23—28頁。
教材簡(jiǎn)析:
該信息窗呈現(xiàn)的是圓柱和圓錐形狀的冰淇淋盒,并分別標(biāo)出了它們的底面直徑和高。引導(dǎo)學(xué)生提出問題,引入對(duì)圓柱、圓錐體積計(jì)算的探索和學(xué)習(xí)!昂献魈剿鳌敝械谝粋(gè)紅點(diǎn)部分是學(xué)習(xí)圓柱的體積。
教學(xué)目標(biāo):
1、結(jié)合具體情境,通過探索與發(fā)現(xiàn),理解并掌握?qǐng)A柱并能解決簡(jiǎn)單的實(shí)際問題。
2、經(jīng)歷探索圓柱計(jì)算公式的過程,進(jìn)一步發(fā)展空間觀念。
3、在觀察與實(shí)驗(yàn)、猜測(cè)與驗(yàn)證、交流與反思等活動(dòng)中,初步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,初步了解并掌握一些數(shù)學(xué)思想方法。
教學(xué)重點(diǎn)和難點(diǎn):
圓柱、圓錐體積的計(jì)算方法,以及體積公式的探索推導(dǎo)過程。
教具準(zhǔn)備:
多媒體課件、圓柱體積學(xué)具、沙子等。
第一課時(shí)
教學(xué)過程:
一、創(chuàng)設(shè)情境,激趣引入。
談話:同學(xué)們,天氣漸漸熱了,在夏季同學(xué)們最喜歡的冷飲是什么?(生回答)
課件出示:兩個(gè)圓柱體冰淇淋。
談話:看,小明買了兩個(gè)冰淇淋,你能猜猜哪種包裝盒體積大嗎?
。ㄉ聹y(cè))這節(jié)課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)
設(shè)計(jì)意圖:
從生活中常見的例子導(dǎo)入新課,從中培養(yǎng)學(xué)生在生活中發(fā)現(xiàn)數(shù)學(xué)問題、提出問題的意識(shí)。學(xué)生的猜測(cè)為后面的實(shí)驗(yàn)驗(yàn)證做好了鋪墊,激發(fā)學(xué)生探究新知的欲望。
二、回憶舊知,實(shí)現(xiàn)遷移。
談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請(qǐng)大家想一想,在學(xué)習(xí)圓的面積時(shí),我們是怎樣推導(dǎo)出圓的面積計(jì)算公式的?
。▽W(xué)生回答后,教師利用多媒體課件動(dòng)態(tài)演示把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓與所拼成的長(zhǎng)方形之間的關(guān)系,進(jìn)而推導(dǎo)出圓面積計(jì)算公式的過程。)
設(shè)計(jì)意圖:
通過回顧圓的面積的推導(dǎo)方法,巧妙地運(yùn)用舊知識(shí)進(jìn)行遷移。
三、利用素材,探索新知。
、褰涣鞑聹y(cè)
談話:通過剛才的回顧,你們能想辦法將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的立體圖形來求體積嗎?
生:我們學(xué)過長(zhǎng)方體的體積,可不可以將圓柱轉(zhuǎn)化成長(zhǎng)方體呢?
師談話:你的想法很好,怎樣轉(zhuǎn)化呢?
生討論,交流。
生匯報(bào),可能會(huì)有以下幾種想法:
1、先在圓柱的底面上畫一個(gè)最大的正方形,再豎著切掉四周,得到一個(gè)長(zhǎng)方體,然后把切下的四塊拼在一起。
2、可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。
3、如果是橡皮泥那樣的',可以把它重新捏成一個(gè)長(zhǎng)方體,就能計(jì)算出它的體積了。
談話:請(qǐng)同學(xué)討論和評(píng)價(jià)一下,哪一種方法更合理呢?引導(dǎo)學(xué)生按照第二種方法進(jìn)行驗(yàn)證。
㈡實(shí)驗(yàn)驗(yàn)證
學(xué)生動(dòng)手進(jìn)行實(shí)驗(yàn)。
談話:請(qǐng)每個(gè)小組拿出學(xué)具,按照剛才第3小組的方法把它轉(zhuǎn)化為近似的長(zhǎng)方體,并研究轉(zhuǎn)化后的長(zhǎng)方體和原來圓柱體積、底面積、高之間的關(guān)系。
學(xué)生合作操作,集體研究、討論、記錄。
設(shè)計(jì)意圖本環(huán)節(jié)讓學(xué)生親自動(dòng)手 操作,再次感受“化圓為方”的思想。動(dòng)手操作,是學(xué)生發(fā)現(xiàn)規(guī)律和獲取數(shù)學(xué)思想的重要途徑。
四、分析關(guān)系,總結(jié)公式
1、全班交流
談話:哪個(gè)小組愿意展示一下你們小組的研究結(jié)果?
引導(dǎo)學(xué)生發(fā)現(xiàn):
轉(zhuǎn)化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。
2、分析關(guān)系
引導(dǎo)說出:圓柱體轉(zhuǎn)化成長(zhǎng)方體后,雖然形狀變了,但是長(zhǎng)方體的體積和原來圓柱的體積相等,長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高等于圓柱的高。
3、總結(jié)公式。
談話:同學(xué)們真了不起!你們的發(fā)現(xiàn)非常正確。我們來看一看課件演示。
。ㄕn件分別演示將圓柱等分成16份、32份、64份的割拼過程,學(xué)生觀察、思考。)
談話:你發(fā)現(xiàn)了什么?
引導(dǎo)觀察:分的份數(shù)越多,拼成的圖形就越接近長(zhǎng)方體。
。ㄕn件動(dòng)態(tài)演示:圓柱的高——長(zhǎng)方體的高,圓柱的底面積——長(zhǎng)方體的底面積。)
談話:其實(shí)大家剛才又采用了“化圓為方”的方法將圓柱轉(zhuǎn)化成了長(zhǎng)方體。你現(xiàn)在能總結(jié)出圓柱體積的計(jì)算公式嗎?說一說你是怎樣想的。
根據(jù)學(xué)生的回答教師板書:
長(zhǎng)方體的體積 = 底面積 × 高
圓柱的體積 = 底面積 × 高
談話:你能用字母表示圓柱的體積計(jì)算公式嗎?V=Sh
設(shè)計(jì)意圖教師給予適當(dāng)?shù)难菔,溝通圓面積計(jì)算公式的推導(dǎo)方法與圓柱體積計(jì)算公式推導(dǎo)方法的共同點(diǎn)——轉(zhuǎn)化法,便于學(xué)生順利推導(dǎo)出圓柱體積的計(jì)算公式。
五、利用公式,解決問題。
自主練習(xí)第1題、第2題、第3題
設(shè)計(jì)意圖鞏固練習(xí)及時(shí)讓學(xué)生利用結(jié)論解決問題,感受自己研究的重要價(jià)值,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
六、課堂總結(jié)
《圓柱的體積》教學(xué)設(shè)計(jì)2
教學(xué)目標(biāo)
1、知識(shí)與技能:理解教材中形體轉(zhuǎn)化的過程,掌握?qǐng)A柱體積的計(jì)算公式,會(huì)用公式計(jì)算圓柱的體積,解決有關(guān)簡(jiǎn)單的實(shí)際問題。拓展教材內(nèi)容,初步了解直柱體的相關(guān)知識(shí)。
2、過程與方法:利用教材空間,為學(xué)生搭建思維平臺(tái)。讓學(xué)生經(jīng)歷觀察、想象、思考、交流等教學(xué)活動(dòng)過程,理解圓柱體積計(jì)算公式的推導(dǎo)過程,提高學(xué)生思維能力,同時(shí)體驗(yàn)轉(zhuǎn)化和極限的思想。
3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉(zhuǎn)變?yōu)閷W(xué)生思維能力的培養(yǎng)、提高的過程,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生學(xué)習(xí)興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
教學(xué)重點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過程,運(yùn)用圓柱體積計(jì)算公式準(zhǔn)確解決實(shí)際問題。
教學(xué)難點(diǎn):
正確理解圓柱體積計(jì)算公式的推導(dǎo)過程。
教學(xué)過程
一、情境導(dǎo)入:
老師手拿一個(gè)圓柱形橡皮泥(大小適宜)。
1、師:通過前面的學(xué)習(xí),關(guān)于圓柱你已經(jīng)知道什么?還想了解它的哪些知識(shí)?
生1:(已學(xué)知識(shí))。
生2:圓柱是一種立體圖形,那么它的體積怎么計(jì)算?
【學(xué)情分析:在學(xué)習(xí)圓柱的認(rèn)識(shí)和表面積的基礎(chǔ)上,學(xué)生能夠順利回憶已學(xué)的知識(shí),而且質(zhì)疑提出即將學(xué)習(xí)的知識(shí),明確學(xué)習(xí)目標(biāo),為本節(jié)課的學(xué)習(xí)找到思維與認(rèn)知源泉!
2、師:聯(lián)系已經(jīng)掌握的有關(guān)立體圖形的知識(shí),你能想辦法求出這個(gè)圓柱體的體積嗎?
生1:圓柱體的體積計(jì)算沒有學(xué)過,無法計(jì)算。
生2:將這個(gè)圓柱放入一個(gè)盛有水的長(zhǎng)方體容器中,量出上升了的水的長(zhǎng)、寬、高,就可以求出它的體積。
生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
【學(xué)情分析:學(xué)生在五年級(jí)學(xué)習(xí)長(zhǎng)方體、正方體有關(guān)知識(shí)的基礎(chǔ)上,很容易想到運(yùn)用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學(xué)生展示自我的機(jī)會(huì),培養(yǎng)思維中的自信心。】教師在學(xué)生中找出小助手,幫助測(cè)量有關(guān)數(shù)據(jù),全體同學(xué)計(jì)算水的體積,并作記載。
師:運(yùn)用轉(zhuǎn)化思想,聯(lián)系已學(xué)知識(shí),解決新生問題,同學(xué)們真了不起!
【設(shè)計(jì)意圖:學(xué)生的學(xué)習(xí)活動(dòng)要建立在已有的知識(shí)和認(rèn)知基礎(chǔ)上,通過水的變形把圓柱的體積轉(zhuǎn)化為長(zhǎng)方體的體積來計(jì)算,使學(xué)生初步感知數(shù)學(xué)轉(zhuǎn)化思想在解決問題中的價(jià)值,同時(shí)提高學(xué)生解決問題能力和思維能力!
4、師:如果要求壓路機(jī)前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計(jì)算嗎?(不能)那么求圓柱的體積時(shí)是否也有一個(gè)簡(jiǎn)單、易算的體積計(jì)算公式呢?今天我們就一起來研究圓柱體積的`計(jì)算方法。
【設(shè)計(jì)意圖:學(xué)生的學(xué)習(xí)應(yīng)該是出于自身需要的,是主動(dòng)的、有效的,已有的知識(shí)已經(jīng)不能解決新生問題時(shí),學(xué)生產(chǎn)生強(qiáng)烈的求知欲望,為主動(dòng)參與知識(shí)的形成過程,探究圓柱的體積計(jì)算公式奠定積極的情感基礎(chǔ)!
二、新舊過度:
教師引導(dǎo)學(xué)生觀察圓柱形實(shí)物。
1、
師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長(zhǎng)方形的一條長(zhǎng)為軸,把長(zhǎng)方形旋轉(zhuǎn)一周,就形成一個(gè)圓柱體。
。ń處熝菔荆捍笮〔煌拈L(zhǎng)方形旋轉(zhuǎn)形成圓柱體。)
生2:把一個(gè)圓形上下平移,移動(dòng)過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)
師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關(guān)?(圓柱的底面積和高)
【設(shè)計(jì)意圖:其一,讓學(xué)生初步感知幾何圖形點(diǎn)———線———面———體的演變過程;其二,訓(xùn)練學(xué)生的空間思維能力,進(jìn)而提升學(xué)生的數(shù)學(xué)思維含量;其三,為進(jìn)一步探究圓柱的體積計(jì)算公式明確探究方向!
2、師:圓柱的底面大小就是圓柱底面圓形的面積,叫做圓柱的底面積。誰還記得圓面積計(jì)算公式的推導(dǎo)過程?
學(xué)生口述,同時(shí)課件演示圓形轉(zhuǎn)化為近似長(zhǎng)方形的過程。
【設(shè)計(jì)意圖:回憶圓轉(zhuǎn)化為近似長(zhǎng)方形的過程,使學(xué)生重溫化曲為直、化圓為方的數(shù)學(xué)思想,而且溝通新舊知識(shí)間的聯(lián)系,同時(shí)為下一步對(duì)圓柱的轉(zhuǎn)化(等份切割)順利進(jìn)行提供思維方法的幫助!
3、教師小結(jié):我們能把一個(gè)圓采用化曲為直,化圓為方的方法轉(zhuǎn)化成近似的長(zhǎng)方形,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形呢?
三、自主探究
1、學(xué)生手拿圓柱實(shí)物,仔細(xì)觀察,獨(dú)立思考。
2、組織學(xué)生小組討論,把個(gè)人的想法在小組中交流,形成統(tǒng)一意見。
強(qiáng)調(diào):在討論過程中,教師參與其中,傾聽學(xué)生想法,調(diào)整匯報(bào)次序,同時(shí)提醒學(xué)生觀察手中圓柱實(shí)物。
3、匯報(bào)交流,統(tǒng)一意見。
生1:把一個(gè)圓剪拼成一個(gè)近似的長(zhǎng)方形,然后把圓形和近似長(zhǎng)方形同時(shí)向上平移相同的高度,這時(shí)他們的軌跡一個(gè)是圓柱體,一個(gè)是近似長(zhǎng)方體,而且它們的體積相等。
(師:一個(gè)圓柱和一個(gè)長(zhǎng)方體只要底面積和高分別相等,它們的體積就相等嗎?一會(huì)兒我們來解決這個(gè)問題。)
生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個(gè)近似的長(zhǎng)方體。
(師:為什么是近似的長(zhǎng)方體?———滲透數(shù)學(xué)極限思想)
【設(shè)計(jì)意圖:這個(gè)轉(zhuǎn)化的過程是本節(jié)課的難點(diǎn),在前面知識(shí)鋪墊的基礎(chǔ)上,發(fā)揮學(xué)生集體智慧的結(jié)晶,為學(xué)生提供廣闊的思維和交流平臺(tái),真正使學(xué)生的思維與學(xué)習(xí)相輔相成,從而達(dá)到提高學(xué)生空間思維能力之目的。】
4、課件演示:
師:仔細(xì)觀察下面這組課件,和你想象的是否一樣?
演示兩次,第一次把圓柱平均分成16份,再剪拼成一個(gè)近似的長(zhǎng)方形;第二次把圓柱平均分成32份,再剪拼成一個(gè)近似的長(zhǎng)方形。
師:如果再平均分成更多的份數(shù),結(jié)果會(huì)怎樣呢?(平均分成的份數(shù)越多,轉(zhuǎn)化成的形體就越接近長(zhǎng)方體——極限思想)【問題討論:課件中把圓柱平均分割后,其中的一塊又平均分成兩份,其中的一份移接到另一端,拼成一個(gè)更接近的長(zhǎng)方體,而教材上的意圖并沒有這樣的過程,我認(rèn)為教材的方法是很可取的,符合極限思想,并且可以給予學(xué)生充分的思考和想象空間,因?yàn)橹灰值姆輸?shù)無限多時(shí),拼成的圖形就是一個(gè)長(zhǎng)方體。然而實(shí)際教學(xué)中只是把圓柱平均分成16份或32份,那么在實(shí)際教學(xué)中如何更準(zhǔn)確的詮釋實(shí)際與理論之間的這種矛盾,從而更好的服務(wù)于學(xué)生思維、服務(wù)于課堂教學(xué)呢?】
5、直觀演示,尋找聯(lián)系師:為了強(qiáng)化剛才的轉(zhuǎn)化過程,我們?cè)俳柚鷮?shí)物教具演示一遍(教具一半為紅色,一半為綠色)。仔細(xì)觀察演示過程,你能發(fā)現(xiàn)什么?
生:長(zhǎng)方體的體積相當(dāng)于圓柱的體積,長(zhǎng)方體的底面積相當(dāng)于圓柱的底面積,而且它們的高相等。
因?yàn)椋洪L(zhǎng)方體的體積=底面積×高
所以:圓柱的體積=底面積×高
V = S h 【學(xué)情分析:在小組討論、課件演示的基礎(chǔ)上,再有雙色教具(一個(gè)紅色教具,一個(gè)綠色教具,偶然發(fā)現(xiàn)雙色混合更容易輔助學(xué)生找出聯(lián)系)的實(shí)物演示,使得尋找圓柱體與長(zhǎng)方體之間的聯(lián)系變得異常容易,并且自然而然得到圓柱體體積計(jì)算公式,同時(shí)使學(xué)生感受獲取知識(shí)的成功之喜悅、艱辛之感慨。】
四、實(shí)踐應(yīng)用:
1、從公式中可以看出,只要知道哪些條件就能計(jì)算圓柱的體積?口算:一個(gè)圓柱的底面積是90平方分米,高20分米,它的體積時(shí)多少?
強(qiáng)調(diào)單位:90×20=1800(立方分米)
2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計(jì)算公式計(jì)算它的體積,你需要測(cè)量哪些數(shù)據(jù)?(底面直徑、高)
找學(xué)生實(shí)際測(cè)量,保留整厘米數(shù),進(jìn)行計(jì)算。將計(jì)算結(jié)果與用排水法求出的體積做一對(duì)比,可能存在誤差。師:為什么會(huì)產(chǎn)生誤差呢?
生1:可能測(cè)量有誤差,并且還要保留。
生2:測(cè)量水的長(zhǎng)、寬時(shí),容器的厚度忽略不計(jì),也能產(chǎn)生誤差。教師說明:每一個(gè)科學(xué)結(jié)論都必須經(jīng)過反復(fù)的實(shí)驗(yàn)、計(jì)算,才能得到正確的結(jié)論,我們?cè)趯W(xué)習(xí)上就要有這種不怕吃苦、勇于探索的精神。
3、出示一個(gè)圓柱形玻璃杯,出示一袋液態(tài)奶(225ml),問:通過計(jì)算你能知道這個(gè)杯子能裝下這袋奶嗎?除水杯的厚度忽略不計(jì)外,你還需要知道哪些條件?
(教師直接給出玻璃杯的底面直徑和高)
【設(shè)計(jì)意圖:層次性練習(xí)設(shè)計(jì),第一層:基本練習(xí),使學(xué)生更好的掌握本課重點(diǎn),夯實(shí)基礎(chǔ)知識(shí);第二層,變式練習(xí),進(jìn)一步加深學(xué)生對(duì)圓柱體積公式的理解和掌握,學(xué)會(huì)靈活運(yùn)用公式,在提高學(xué)生動(dòng)手操作能力的同時(shí),培養(yǎng)學(xué)生的邏輯思維能力;第三層,密切聯(lián)系生活,運(yùn)用公式解決引入環(huán)節(jié)中的問題,使學(xué)生的思維處于積極的狀態(tài),達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。】
五、看書質(zhì)疑:看書P19—20,師:哪些知識(shí)是我們沒有講到的?(V=∏r2 h)結(jié)合本節(jié)課的探究過程,你有什么疑問嗎?
若學(xué)生有困難就教師提出問題:長(zhǎng)方體和圓柱體有什么相同的地方,為什么他們的體積都能用V=Sh來計(jì)算?
學(xué)生獨(dú)立思考后,教師解釋:我們現(xiàn)在所學(xué)的圓柱體是直圓柱,他與長(zhǎng)方體都屬于直柱體,只要是直柱體,體積都可以用V=Sh來計(jì)算。如三棱鏡的體積=底面三角形的面積×高
【設(shè)計(jì)意圖:課本是最好的教學(xué)輔助工具,是學(xué)生學(xué)習(xí)最好的伙伴,讓學(xué)生再次重溫本節(jié)課的學(xué)習(xí)歷程,養(yǎng)成一種良好的學(xué)習(xí)習(xí)慣和學(xué)習(xí)品質(zhì)!
【問題討論:我個(gè)人認(rèn)為,在每一節(jié)課每個(gè)知識(shí)點(diǎn)的教學(xué)過程中,都盡量站在“數(shù)學(xué)”的高度來教學(xué),于是對(duì)教材內(nèi)容進(jìn)行了拓展。長(zhǎng)方體與圓柱體的體積公式V=Sh正好說明直柱體體積=底面積×高,但因?yàn)殚L(zhǎng)方體(平面圍成)與圓柱體(曲面圍成)之間的聯(lián)系較難找出,無疑增加了學(xué)生的思維負(fù)擔(dān),但從數(shù)學(xué)學(xué)習(xí)的角度來說,它卻為今后“幾何”學(xué)習(xí)奠定基礎(chǔ),這一環(huán)節(jié)處理是否有利于六年級(jí)學(xué)生思維發(fā)展?】
六、全課小結(jié):
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
【設(shè)計(jì)意圖:收獲包括知識(shí)、能力、方法、情感等全方位的體會(huì),在這里采用體溫師小結(jié),使學(xué)生暢談收獲,發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生語言表達(dá)能力,又能培養(yǎng)學(xué)生的歸納概括能力,同時(shí)通過對(duì)本節(jié)所學(xué)知識(shí)的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識(shí)系統(tǒng)化、完整化!
啟發(fā)與思考
啟發(fā)
一、充實(shí)教材,為提高學(xué)生思維能力搭建平臺(tái)
課堂教學(xué)中讓學(xué)生在教師的啟發(fā)指導(dǎo)下,獨(dú)立思考、積極主動(dòng)的去探究知識(shí)是怎樣形成的,才能真正使學(xué)生成為學(xué)習(xí)的主體。在教材中已經(jīng)提供了圖形轉(zhuǎn)化的過程,那么在沒有學(xué)具讓學(xué)生進(jìn)行動(dòng)手操作、親自感悟的情況下,怎樣讓學(xué)生的思維真正參與到知識(shí)的形成過程呢?作為教師,必須充實(shí)教材。課堂中讓學(xué)生動(dòng)手測(cè)量計(jì)算所必需的數(shù)據(jù),自己感悟?qū)W習(xí)圓柱體積計(jì)算公式的必要性,合作探究圓柱體的轉(zhuǎn)化方法和過程。所有這些環(huán)節(jié)的設(shè)計(jì),都在潛移默化中引導(dǎo)學(xué)生主動(dòng)思考,主動(dòng)參與,在思考與參與中提高了學(xué)生的思維能力。
二、借助教材,為提高學(xué)生思維能力尋找支點(diǎn)
數(shù)學(xué)知識(shí)具有一定的結(jié)構(gòu),知識(shí)間存在密切的聯(lián)系,教學(xué)時(shí)要找出知識(shí)間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個(gè)較完整的知識(shí)系統(tǒng)。教材中設(shè)計(jì)了引問“圓可以轉(zhuǎn)化成長(zhǎng)方形計(jì)算面積,圓柱可以轉(zhuǎn)化成長(zhǎng)方形計(jì)算體積嗎?”但我認(rèn)為“面體過渡”在幾何領(lǐng)域中本身就是一個(gè)難點(diǎn),而“面面互化”遷移到“體體互化”,就難上加難,所以設(shè)計(jì)中用較長(zhǎng)時(shí)間溝通新舊知識(shí)間的聯(lián)系:排水法的應(yīng)用,平面圖形演變?yōu)榱Ⅲw圖形的過程,圓面積的推導(dǎo)過程。在復(fù)習(xí)當(dāng)中,學(xué)生的綜合運(yùn)用能力得到提高,更重要的是為下一步學(xué)生的思維活動(dòng)確立支點(diǎn),進(jìn)而提高學(xué)生的思維能力。
三、理解教材,為提高學(xué)生思維能力提供保證數(shù)學(xué)思想的教學(xué)才是數(shù)學(xué)課堂教學(xué)中最本質(zhì)的教學(xué)。從教材的編排,還有各知識(shí)點(diǎn)的呈現(xiàn)中可以看出,有一條不變的主線貫穿始終,那就是轉(zhuǎn)化思想中的化曲為直、化圓為方。那么,只要教師真正理解教材的這一編寫意圖,學(xué)生所收獲到的就不僅是圓柱體積的計(jì)算方法,而是真正感悟到數(shù)學(xué)轉(zhuǎn)化思想,學(xué)生必將運(yùn)用這種思想影響今后的學(xué)習(xí),為其思維能力得以持續(xù)發(fā)展提供保證。思考
思考
一、演示、觀察能否代替操作?
教材中提供了教具演示,但在本節(jié)教學(xué)前,始終沒有找到學(xué)生使用的操作學(xué)具,而自己也嘗試用土豆、橡皮泥等制作學(xué)具,都因?yàn)殡y度太大(粘接處)而告失敗,在無奈之余,設(shè)計(jì)了“獨(dú)立思考———小組探究———課件演示———教具操作”四個(gè)環(huán)節(jié)來突破本節(jié)難點(diǎn)。就學(xué)生理解、接受方面來說效果不錯(cuò)。但沒有讓學(xué)生親自操作,總感覺影響學(xué)生思維發(fā)展。類似教學(xué)如:圓錐高的認(rèn)識(shí)。
二、研究中的失誤會(huì)不會(huì)造成學(xué)生認(rèn)知的“失誤”?
課堂中為求真實(shí),進(jìn)行了兩次實(shí)際測(cè)量(第一次測(cè)長(zhǎng)方體中水的長(zhǎng)寬高;第二次測(cè)圓柱形橡皮泥的底面直徑和高)。兩次計(jì)算結(jié)果的對(duì)比,使學(xué)生思維與課堂結(jié)構(gòu)都體現(xiàn)完整性。但由于種種誤差,計(jì)算結(jié)果很可能不會(huì)相等,這就可能會(huì)讓學(xué)生對(duì)結(jié)論產(chǎn)生懷疑(盡管教師已經(jīng)說明),那么是否有必要讓學(xué)生經(jīng)歷一個(gè)“失誤”的過程呢?類似教學(xué)如:圓周率的計(jì)算。
《圓柱的體積》教學(xué)設(shè)計(jì)3
教學(xué)目標(biāo):
1.知識(shí)與技能:運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,會(huì)用圓柱的體積公式計(jì)算圓柱形物體的體積。
2.方法與過程:經(jīng)歷猜測(cè)、驗(yàn)證、合作、動(dòng)手操作等過程,體驗(yàn)和理解圓柱體體積公式的推導(dǎo)過程。
3情感、態(tài)度、價(jià)值觀:創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)的積極性。讓學(xué)生在主動(dòng)學(xué)習(xí)的基礎(chǔ)上,逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)法,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生抽象、概括的思維能力。
教學(xué)重點(diǎn)和難點(diǎn):
圓柱體積公式推導(dǎo)過程;正確理解圓柱體積公式推導(dǎo)過程。
教具:
圓柱的體積公式演示教具,圓柱的體積公式演示課件
教學(xué)過程:
一、教學(xué)回顧
1、交代任務(wù):這節(jié)課我們來學(xué)習(xí)《圓柱的體積》。
2、回憶導(dǎo)入
(1)、請(qǐng)大家想一想,我們?cè)趯W(xué)習(xí)圓的面積時(shí),是怎樣把圓變成已學(xué)過的圖形再計(jì)算面積的?
(2)、我們都學(xué)過那些立體圖形的體積公式。
二、積極參與探究感受
1、猜測(cè)圓柱的體積和那些條件有關(guān)。(電腦演示)
2、.探究推導(dǎo)圓柱的體積計(jì)算公式。
小組合作討論:
(1)將圓柱體切割拼成我們學(xué)過的什么立體圖形?
(2)切拼前后的兩個(gè)物體什么變了?什么沒變?
(3)切拼前后的兩個(gè)物體有什么聯(lián)系?
課件演示拼、組的過程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64份),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。
、侔褕A柱拼成長(zhǎng)方體后,形狀變了,體積不變。(板書:長(zhǎng)方體的體積=圓柱的體積)
、谄闯傻拈L(zhǎng)方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)
、蹐A柱的體積=底面積×高字母公式是V=Sh(板書公式)
2、練一練:一根圓柱形木料,底面積為75平方厘米,長(zhǎng)90厘米,它的體積是多少?
3、要用這個(gè)公式計(jì)算圓柱的體積必須知道什么條件?
三、練習(xí)
1、填空
(1)、圓柱體通過切拼轉(zhuǎn)化成近似的( )體。這個(gè)長(zhǎng)方體的底面積等于圓柱體的( ),這個(gè)長(zhǎng)方體的高等于圓柱體( ) 。因?yàn)殚L(zhǎng)方體的體積等于
(),所以,圓柱體的體積等于()用字母表示
() 。
(2)、底面積是10平方米,高是2米,體積是
()。
(3)、底面半徑是2分米,高是5分米,體積是
( )。
2討論:
(1)已知圓柱底面的半徑和高,怎樣求圓柱的體積
V=兀r2 × h
(2)已知圓柱底面的直徑和高,怎樣求圓柱的體積
V=兀(d÷2)2×h
(3)已知圓柱底面的周長(zhǎng)和高,怎樣求圓柱的體積
V=兀(C÷!2) ×h
3、練習(xí):已知半徑和高求體積,已知直徑和高求體積。
四、小結(jié)或質(zhì)疑
五、作業(yè)
課后做一做第1、2、3題。
板書設(shè)計(jì):
圓柱的體積
長(zhǎng)方體的體積=底面積x高
圓柱的體積=底面積x高
V=Sh
本節(jié)課的設(shè)計(jì)思考:
一、讓學(xué)生在現(xiàn)實(shí)情境中體驗(yàn)和理解數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的、又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會(huì)求嗎?)學(xué)生聽到教師提的問題訓(xùn)在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長(zhǎng)方體(已知)的知識(shí)聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實(shí)際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,能用剛才同學(xué)們想出來的`辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
二、鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實(shí)驗(yàn)、模擬、推斷等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨(dú)立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長(zhǎng)方體。那么怎樣來切割呢?此時(shí)采用小組討論交流的形式。同學(xué)們有了圓面積計(jì)算公式推導(dǎo)的經(jīng)驗(yàn),經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動(dòng)手操作,拼成了一個(gè)近似的長(zhǎng)方體。同學(xué)們?cè)诓僮、比較中,圍繞圓柱體和長(zhǎng)方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個(gè)過程,學(xué)生從形象具體的知識(shí)形成過程(想象、操作、演示)中,認(rèn)識(shí)得以升華(較抽象的認(rèn)識(shí)——公式)。不足之處:
在學(xué)生們動(dòng)手操作時(shí),我處理的有點(diǎn)急,沒有給學(xué)生充分的思考和探究的時(shí)間。在今后的教學(xué)中我要特別關(guān)注學(xué)生的學(xué)習(xí)過程,優(yōu)化課堂教學(xué),對(duì)教材進(jìn)行適當(dāng)?shù)募庸ぬ幚。?shù)學(xué)知識(shí)的教學(xué),必須抓住各部分內(nèi)容之間的內(nèi)在聯(lián)系,遵循教材特點(diǎn)和學(xué)生的認(rèn)知規(guī)律。圓柱體積的教學(xué),要借助于學(xué)生已經(jīng)學(xué)過的長(zhǎng)方體體積的計(jì)算方法,通過分析、推導(dǎo)、演示,發(fā)現(xiàn)新知識(shí)。推導(dǎo)出圓柱體積的計(jì)算公式,實(shí)現(xiàn)教學(xué)目的。圓柱的體積這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)和技能上,通過對(duì)圓柱體積的具體研究,理解圓柱體的體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積;在方法的選擇上,抓信新舊知識(shí)的聯(lián)系,通過想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探究。在新的課改形勢(shì)下,死記硬背這種膚淺的、教條的、機(jī)械的學(xué)習(xí)方式已經(jīng)完全不適應(yīng)教學(xué)改革的需要,不利于學(xué)生健康的成長(zhǎng)發(fā)展的需要,教師要重視引導(dǎo)學(xué)生去探索,思考,發(fā)現(xiàn)規(guī)律,培養(yǎng)學(xué)生分析問題和解決問題的能力。反思本節(jié)課的教學(xué),覺得在練習(xí)設(shè)計(jì)上還可以下一番功夫。比如可以設(shè)計(jì)開放性習(xí)題:給一個(gè)圓柱形積木,讓學(xué)生先測(cè)量相關(guān)數(shù)據(jù)再計(jì)算體積等等。
三、教師的語言非常貧乏
在課堂教學(xué)中,評(píng)價(jià)語言是非常重要,它總是伴隨在教學(xué)的始終,貫穿于整個(gè)課堂,缺乏激勵(lì)的課堂就會(huì)像一潭死水,毫無生機(jī)。而精妙的評(píng)價(jià)語言就像是催化劑,能使課堂掀起層層波瀾,讓學(xué)生思維的火花時(shí)刻被點(diǎn)燃。教師準(zhǔn)確,生動(dòng),親切的評(píng)價(jià)語言大大調(diào)動(dòng)了學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,讓學(xué)生在激勵(lì)中學(xué)、自信中學(xué)、快樂中學(xué),讓教師與學(xué)生零距離地接觸,我想學(xué)生的心理更能感覺到更大的鼓舞。
蘇霍姆林斯基指出:“教育的藝術(shù)首先包括談話的藝術(shù)!苯處煹慕虒W(xué)效果,很大程度上取決于他的語言表達(dá)能力。數(shù)學(xué)課堂教學(xué)過程就是數(shù)學(xué)知識(shí)的傳遞過程。在整個(gè)課堂教學(xué)過程中,數(shù)學(xué)知識(shí)的傳遞、學(xué)生接受知識(shí)情況的反饋,師生間的情感交流等,都必須依靠數(shù)學(xué)語言。教師的語言表達(dá)方式和質(zhì)量直接影響著學(xué)生對(duì)知識(shí)的接受,教師語言的情感引發(fā)著學(xué)生的情感,所以說教師的語言藝術(shù)
是課堂教學(xué)藝術(shù)的核心。我這節(jié)課最大的失誤是語言沒有發(fā)揮出調(diào)控課堂駕馭課堂的作用。
《圓柱的體積》教學(xué)設(shè)計(jì)4
【教材簡(jiǎn)析】:
本節(jié)內(nèi)容包括圓柱的體積計(jì)算公式的推導(dǎo),利用公式直接計(jì)算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學(xué)生學(xué)過的知識(shí)作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體化成已學(xué)過的立體圖形,再通過觀察、比較找兩個(gè)圖形之間的關(guān)系,可推導(dǎo)出圓柱的體積計(jì)算公式。
【教學(xué)內(nèi)容】:
p19-20頁的內(nèi)容和例題,完成“做一做”及練習(xí)三第1~4題。
【教學(xué)目標(biāo)】:
1、通過用切割拼合的方法借助長(zhǎng)方體的體積公式推導(dǎo)出圓柱的體積公 式,能夠運(yùn)用公式正確地計(jì)算圓柱的體積和容積。
2、初步學(xué)會(huì)用轉(zhuǎn)化的`數(shù)學(xué)思想和方法,解決實(shí)際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識(shí)。
【教學(xué)重點(diǎn)】:掌握?qǐng)A柱體積的計(jì)算公式。
【教學(xué)難點(diǎn)】:圓柱體積的計(jì)算公式的推導(dǎo)。
【教學(xué)過程】:
第一課時(shí)本冊(cè)總課時(shí):12 課時(shí)
一、復(fù)習(xí)
1、長(zhǎng)方體的體積公式是什么?(長(zhǎng)方體的體積=長(zhǎng)×寬×高,長(zhǎng)方體和正方體體積的統(tǒng)一公式“底面積×高”,即長(zhǎng)方體的體積=底面積×高)
2、什么叫做物體的體積?你會(huì)計(jì)算下面那些圖形的體積?
3、拿出一個(gè)圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
4、復(fù)習(xí)圓面積計(jì)算公式的推導(dǎo)過程:把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓和所拼成的長(zhǎng)方形之間的關(guān)系,再利用求長(zhǎng)方形面積的計(jì)算公式導(dǎo)出求圓面積的計(jì)算公式。
二、新課
1、圓柱體積計(jì)算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長(zhǎng)方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的12塊,把它們拼成一個(gè)近似長(zhǎng)方體的立體圖形——課件演示)
(2)由于我們分的不夠細(xì),所以看起來還不太像長(zhǎng)方體;如果分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體了。(課件演示將圓柱細(xì)分,拼成一個(gè)長(zhǎng)方體)
(1)拼成近似長(zhǎng)方體的體積與原來的圓柱體積有什么關(guān)系?(相等)
(2)拼成的近似長(zhǎng)方體的底面積與原來圓柱的底面積有什么關(guān)系?(相等)
(3)拼成的近似長(zhǎng)方體的高與原來的圓柱的高有什么關(guān)系?(相等)
(3)通過觀察,使學(xué)生明確:
長(zhǎng)方體的底面積等于圓柱的底面積,
長(zhǎng)方體的高就是圓柱的高。
長(zhǎng)方體的體積=底面積×高,
所以圓柱的體積=底面積×高,
v = s h
圓柱的體積計(jì)算公式是:
v=s h
2、課堂練習(xí):
。1)出示做一做:一根圓柱形鋼材,底面積是75平方厘米,長(zhǎng)90厘米。它的體積是多少?
。2)指名學(xué)生分別回答下面的問題:
、 這道題已知什么?求什么?
、 能不能根據(jù)公式直接計(jì)算?
③ 計(jì)算之前要注意什么?(計(jì)算時(shí)既要分析已知條件和問題,還要注意要先統(tǒng)一計(jì)量單位)
。3)讓學(xué)生解答和板算,最后師生共同完成.
解:v=sh
。75×90
。675(立方厘米)
答:它的體積是675立方厘米。
3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計(jì)算公式是怎樣的(v=π rh)
4.作業(yè):
《圓柱的體積》教學(xué)設(shè)計(jì)5
【教學(xué)過程】
一、揭示課題,確定目標(biāo)
談話:前面我們認(rèn)識(shí)了圓柱,學(xué)習(xí)了圓柱的底面積、側(cè)面積和表面積,今天學(xué)習(xí)“圓柱的體積”。(教師板書,學(xué)生齊讀)
啟發(fā):看到這個(gè)課題,你們會(huì)想到什么?這堂課要解決什么問題呀?(可能學(xué)生會(huì)提出以下幾個(gè)問題)
引導(dǎo):(1)什么是圓柱的體積?
。2)圓柱的體積和什么有關(guān)?
。3)圓柱的體積公式是怎樣推導(dǎo)出來的?
(4)圓柱的體積是怎樣求出來的?
(5)學(xué)習(xí)圓柱的體積公式有什么用?……
談話:對(duì)!剛才這幾位同學(xué)跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小
談話:這堂課我們主要解決三個(gè)問題:(出示探究問題)
1、圓柱的'體積和什么有關(guān)?
2、這個(gè)公式是怎樣推導(dǎo)出來的?
3、學(xué)習(xí)了圓柱的體積能解決什么實(shí)際問題?
【設(shè)計(jì)意圖】
直接揭示課題,啟發(fā)學(xué)生自己提出教學(xué)的要求,這樣既創(chuàng)設(shè)了問題情境,激發(fā)學(xué)生學(xué)習(xí)的興趣,又使學(xué)生明確這堂課的教學(xué)目標(biāo)。
二、溫故知新,自學(xué)課本
1、提出問題
談話:現(xiàn)在請(qǐng)大家回憶一下,我們以前學(xué)過哪些立體圖形的體積計(jì)算。是怎樣計(jì)算的?
引導(dǎo):我們已經(jīng)學(xué)過長(zhǎng)方體、正方體的體積計(jì)算。(教師隨著學(xué)生的回答,逐一出示出上述圖形)。
談話:長(zhǎng)方體的體積=長(zhǎng)×寬×高
正方體的體積=棱長(zhǎng)×棱長(zhǎng)×棱長(zhǎng)
統(tǒng)一為:長(zhǎng)方體或正方體的體積=底面積×高
談話:長(zhǎng)方體和正方體和今天學(xué)習(xí)的圓柱有什么顯著的區(qū)別?
引導(dǎo):長(zhǎng)方體的面都是平面圖形,圓柱的側(cè)面是一個(gè)曲面。
談話:因?yàn)閳A柱的側(cè)面是一個(gè)曲面,計(jì)算圓柱的體積就比較困難了。能不能直接用體積單位去量呢?
引導(dǎo):它的側(cè)面是一個(gè)曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想
談話:圓柱的體積和什么有關(guān)系呢?(準(zhǔn)備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)
引導(dǎo):圓柱體的體積既和底面積有關(guān),又和高有關(guān)。
3、自學(xué)課本
談話:圓柱體的體積和底面積、高到底有什么關(guān)系呢?如何求圓柱體的體積?
啟發(fā):請(qǐng)大家閱讀課本,在課本中尋找答案。(教師要求學(xué)生利用預(yù)先準(zhǔn)備好的平均分成16份圓柱學(xué)具拼一拼,學(xué)生一邊看書,一邊操作。學(xué)生閱讀課本后,全班交流。)
引導(dǎo):我們用圖形轉(zhuǎn)化的方法,求圓柱的體積。
談話:這個(gè)辦法很好。那么把圓柱轉(zhuǎn)化成什么圖形呢?
引導(dǎo):長(zhǎng)方體。
談話:以前我們學(xué)習(xí)圓的面積時(shí)也是運(yùn)用轉(zhuǎn)化的策略,把圓轉(zhuǎn)化成近似的長(zhǎng)方形,“化曲為直”、“化圓為方”推導(dǎo)出圓的面積計(jì)算公式。
。ㄓ枚嗝襟w演示圓形的轉(zhuǎn)化過程,邊出示、邊交流)
【設(shè)計(jì)意圖】
在不能用體積單位直接量的情況下,啟發(fā)學(xué)生運(yùn)用轉(zhuǎn)化的數(shù)學(xué)思想解決問題。通過復(fù)習(xí)了舊知識(shí),又為學(xué)習(xí)新知識(shí)作好鋪墊,能夠促進(jìn)學(xué)生充分運(yùn)用遷移規(guī)律把新舊知識(shí)聯(lián)系起來組成一個(gè)新的知識(shí)結(jié)構(gòu)。
三、合作交流發(fā)展能力
談話:同學(xué)們觀察一下,拼成的是什么圖形?
引導(dǎo):近似的長(zhǎng)方體。
啟發(fā):說得很好,為什么說是近似的長(zhǎng)方體,哪里不太像?
引導(dǎo):長(zhǎng)都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
啟發(fā):可以分成32等分、64等分(多媒體課件演示)128等分……
《圓柱的體積》教學(xué)設(shè)計(jì)6
《圓柱的體積》是青島版標(biāo)準(zhǔn)實(shí)驗(yàn)數(shù)學(xué)課本第十二冊(cè)第二單元《圓柱和圓錐》中信息窗3的內(nèi)容,它包括圓柱體的體積計(jì)算公式的推導(dǎo)和運(yùn)用公式計(jì)算圓柱的體積。教材充分利用學(xué)生學(xué)過的知識(shí)作鋪墊,采用遷移法,引導(dǎo)學(xué)生將圓柱體轉(zhuǎn)化成已學(xué)過的立體圖形,再通過觀察、比較找出兩個(gè)圖形之間的關(guān)系,來推導(dǎo)出圓柱的體積計(jì)算公式!秷A柱和圓錐》這一單元是小學(xué)階段學(xué)習(xí)幾何形體知識(shí)的最后部分,是幾何知識(shí)的綜合運(yùn)用。在此之前,學(xué)生已掌握了一定的幾何知識(shí)與數(shù)學(xué)方法,部分學(xué)生思維活躍,數(shù)學(xué)成績(jī)較好,加上“圓的面積公式”的推導(dǎo)的學(xué)習(xí),輔以多媒體的教學(xué),學(xué)生應(yīng)該容易完成圓柱體體積計(jì)算公式的推導(dǎo)過程,為今后學(xué)習(xí)復(fù)雜的形體知識(shí)打下扎實(shí)的基礎(chǔ)
[教學(xué)目的]
1、運(yùn)用遷移規(guī)律,引導(dǎo)學(xué)生借助圓面積計(jì)算公式的推導(dǎo)方法來推導(dǎo)圓柱的體積計(jì)算公式,并理解其推導(dǎo)過程。
2、會(huì)用圓柱的體積計(jì)算公式計(jì)算圓柱形物體的體積或容積。
3、引導(dǎo)學(xué)生逐步學(xué)會(huì)轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)學(xué)方法,培養(yǎng)學(xué)生解決實(shí)際問題的能力。
4、借助遠(yuǎn)程教育的課件資源演示,培養(yǎng)學(xué)生抽象、概括的思維能力。
[教學(xué)重難點(diǎn)]
圓柱體體積計(jì)算公式的推導(dǎo)過程
[設(shè)計(jì)理念及策略]
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!奔匆笪覀?cè)诮虒W(xué)中,要讓學(xué)生通過自主的知識(shí)建構(gòu)活動(dòng),學(xué)生的潛能得以開發(fā),情感、態(tài)度、價(jià)值觀得以培養(yǎng),從而提高學(xué)生的數(shù)學(xué)素養(yǎng)。因此根據(jù)本節(jié)課內(nèi)容的特點(diǎn),這節(jié)課的教學(xué)將通過對(duì)圓柱體積知識(shí)的探究,重點(diǎn)培養(yǎng)學(xué)生探究數(shù)學(xué)知識(shí)的能力和方法。為了把“一切為了學(xué)生的發(fā)展”這一新的教學(xué)理念融入到了課堂教學(xué)之中。在課堂教學(xué)中將以學(xué)生的活動(dòng)為主,讓學(xué)生通過親身體驗(yàn)、實(shí)際操作來找出數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系。在學(xué)生學(xué)習(xí)過程中,充分運(yùn)用了遠(yuǎn)程教育資源中動(dòng)畫、聲音、視頻文件,并進(jìn)行了有效地整合。本節(jié)課將使用以下策略:
1、利用遷移規(guī)律引入新課,借助遠(yuǎn)程資源為學(xué)生創(chuàng)設(shè)良好的學(xué)習(xí)情境。
2、以合作探究為主要的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的自主性,體現(xiàn)學(xué)生的主體地位。
3、練習(xí)多樣化,層次化。
4、引導(dǎo)學(xué)生把知識(shí)轉(zhuǎn)化成相應(yīng)的技能,從而提高靈活運(yùn)用的能力,培養(yǎng)學(xué)生的綜合素質(zhì)。
[教學(xué)準(zhǔn)備]
多媒體課件、圓柱體體積演示器
[教學(xué)過程]
一、回憶舊知,實(shí)現(xiàn)遷移。
1、學(xué)習(xí)圓的面積時(shí),我們是怎樣推導(dǎo)出圓的面積計(jì)算公式的?利用多媒體課件動(dòng)態(tài)演示把圓等分切割,拼成一個(gè)近似的長(zhǎng)方形,找出圓與所拼成的長(zhǎng)方形之間的關(guān)系,進(jìn)而推導(dǎo)出圓面積計(jì)算公式的過程。
2、計(jì)算圓的面積。
A.半徑5厘米
B.直徑6分米
二、指名說說自己想法。
教師引入:這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的圖形來求出它的體積。(板書課題:圓柱的體積)
1、交流猜測(cè)談話:通過剛才的回顧,你們能想辦法將圓柱轉(zhuǎn)化成我們已經(jīng)學(xué)過的立體圖形來求體積嗎?怎樣轉(zhuǎn)化呢?
2、生討論,交流。
三、驗(yàn)證。
教師演示:
(1)屏幕上呈現(xiàn)一個(gè)圓柱體變?yōu)橐粋(gè)長(zhǎng)方體(圓柱與長(zhǎng)方體等底等高)的動(dòng)畫。提問:變化過程中,圓柱的什么變了(截面)?什么沒有變(高、體積)?
(2)將圓柱的底面、長(zhǎng)方體的底面閃爍后移出來。提問:你學(xué)過將圓變成長(zhǎng)方形嗎?
(3)再次出示圓柱形物體,動(dòng)畫演示圓柱拼成近似長(zhǎng)方體。讓學(xué)生取出圓柱體學(xué)具拼成近似長(zhǎng)方體。
四、探索圓柱與所拼成的近似長(zhǎng)方體之間的關(guān)系。
1、學(xué)生動(dòng)手進(jìn)行實(shí)驗(yàn)。請(qǐng)每個(gè)小組拿出學(xué)具,并研究轉(zhuǎn)化后的長(zhǎng)方體和原來圓柱體積、底面積、高之間的關(guān)系。
2、學(xué)生利用學(xué)具獨(dú)立操作(教師巡視、指導(dǎo)操作有困難的學(xué)生),思考并討論。
3、通過剛才的實(shí)驗(yàn)?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕崎L(zhǎng)方體的體積與原來的圓柱體積有什么關(guān)系? ②拼成的近似長(zhǎng)方體的底面積與原來圓柱的底面積有何關(guān)系? ③拼成的近似長(zhǎng)方體的高與原來的圓柱的高有什么關(guān)系?
4、學(xué)生匯報(bào)交流。
五、分析關(guān)系,總結(jié)公式引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:
圓柱體轉(zhuǎn)化成長(zhǎng)方體后,雖然形狀變了,但是長(zhǎng)方體的體積和原來圓柱的體積相等,長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高等于圓柱的高。 總結(jié)公式。
長(zhǎng)方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
六、拓展訓(xùn)練。
一個(gè)圓柱形量桶,底面半徑是5厘米,把一塊鐵塊從這個(gè)量桶里取出后,水面下降3厘米,這塊鐵塊的體積是多少?
七、課堂總結(jié)。
[附:板書設(shè)計(jì)]圓柱的體積
長(zhǎng)方體的體積=底面積×高
圓柱的體積=底面積×高
V=Sh
[教學(xué)反思]
1、這節(jié)課是通過觀察、猜想、操作驗(yàn)證、鞏固、應(yīng)用這幾個(gè)環(huán)節(jié)來完成的。學(xué)生在最佳的情景中通過實(shí)踐、探索、發(fā)現(xiàn),得到了“活”的知識(shí),學(xué)到有價(jià)值的數(shù)學(xué)。
2、操作驗(yàn)證是本節(jié)課的關(guān)鍵,為體現(xiàn)活動(dòng)教學(xué)中學(xué)生“主動(dòng)探索”的`特點(diǎn),我從問題入手,組織學(xué)生圍繞觀察猜想后展開驗(yàn)證性的操作活動(dòng)。學(xué)生以活動(dòng)小組為單位,思維活躍,積極探索,學(xué)習(xí)能力、抽象概括能力和邏輯思維能力得到了提高。
3、充分利用媒體資源,化解難點(diǎn),提高課堂效果;注重習(xí)題多樣化、層次化,拓展學(xué)生思維。
一、情景引入
1、舉起圓柱形水杯。
(1)同學(xué)們請(qǐng)看,這是一個(gè)什么形狀的被杯子?關(guān)于圓柱的知識(shí)你都知道哪些?生充分交流。
很好,關(guān)于圓柱你還想知道什么啊?
體積是嗎?
(2)如果,老師在杯子里面裝滿水(用水瓶在杯子里倒水,提起學(xué)生興趣),你能知道這些水的體積是多少嗎?
生充分交流
(3)討論后匯報(bào):把水倒入長(zhǎng)方體容器中,量出數(shù)據(jù)后再計(jì)算(求水的體積了)。評(píng)價(jià):這個(gè)方法真好,把它轉(zhuǎn)化為求長(zhǎng)方體的體積來求水的體積。量筒學(xué)生能說出來就說,不能就直接過去。
(那么現(xiàn)在我想知道杯子的體積,,你有什么好的方法嗎?)學(xué)生交流測(cè)量不規(guī)則物體。
同學(xué)們,是不是所有的圓柱都能用剛才的辦法求出體積呢?(出示課件壓路機(jī)柱子)。如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?
這就需要我們探究出一種適合所有圓柱體積的計(jì)算方法,這節(jié)課就讓我們一起來研究圓柱的體積(出示課題:圓柱的體積)板書課題:圓柱的體積。
二、新課教學(xué):
(1)學(xué)生猜想環(huán)節(jié)
師:大家猜想圓柱體體積和什么有關(guān)?學(xué)生交流。說出為什么?自己比劃著說,也可以用事物演示,比較高和底)
同學(xué)們的思想都很活躍,那么現(xiàn)在你們想采用什么方法去研究圓柱體體積? (萬一沒有會(huì)的,就要引:我們過去學(xué)習(xí)圖形的時(shí)候,都是通過哪些方法研究學(xué)習(xí)。轉(zhuǎn)化。)
讓我們?cè)谝黄鸹仡櫼幌聢A形面積的推導(dǎo)過程(演示圓形的推導(dǎo)過程)
我們能把一個(gè)圓采用化曲為直、化圓為方的方法,把圓轉(zhuǎn)化為長(zhǎng)方形,從而推導(dǎo)出了圓面積的計(jì)算公式,板書。轉(zhuǎn)化圓轉(zhuǎn)化為長(zhǎng)方形。
(2)學(xué)生探究環(huán)節(jié)
現(xiàn)在能否采用類似的方法,將圓柱轉(zhuǎn)化成我們學(xué)過的圖形來求它的體積呢?來求出它的體積。先獨(dú)立思考,再把你的想法在組內(nèi)交流一下。讓學(xué)生說出怎么樣切割。
誰能說說該怎么分,拿出蘿卜,這就是一個(gè)圓柱,你想怎么分?亮出刀,來吧,請(qǐng)動(dòng)手。
教具演示,一共是16份,讓我們閉著眼睛想象一下32,,64份是什么樣?(滲透極限思想,得板書出極限)抬頭看大屏幕,看看你們想的和老師分的一樣嗎?
課件演示拼、組的過程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成32份、64份),放到64份時(shí),問學(xué)生,看到這里,你發(fā)現(xiàn)了什么?:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。
那么現(xiàn)在你能探究出圓柱的體積公式了嗎?請(qǐng)拿出書包里的學(xué)具,同桌兩人一組,共同探究,看看哪組同學(xué)最善于觀察也最會(huì)配合。
讓學(xué)生說,結(jié)論都是學(xué)生說出來的,老師不要多話。
學(xué)生研究,上來交流,自由選擇用教具還是大屏幕。
出示課件,最后總結(jié),剛才,我們通過將圓柱轉(zhuǎn)化長(zhǎng)方體(板書):,推導(dǎo)出了圓柱的體積公式:板書能用字母表示出來嗎?v=sh
簡(jiǎn)直太棒了,現(xiàn)在讓我來考考大家把,看看你們能不能學(xué)以致用。
三、練習(xí)鞏固
(1)口答
(2)分層練習(xí),采用星級(jí)分等,讓學(xué)生自由選擇1到3題。星級(jí)越高,難度越大。
(3)知道體積求高的練習(xí),設(shè)計(jì)到單位的轉(zhuǎn)換。
(4)開放性題目,自己動(dòng)手求一個(gè)杯子(圓柱)的體積。
教學(xué)反思:
這次送課下鄉(xiāng)的經(jīng)歷,對(duì)我來說是一次難得的鍛煉機(jī)會(huì)。這期間的備課、上課、聽評(píng)課,讓我對(duì)數(shù)學(xué)教學(xué)的一些方法性問題有了更進(jìn)一步的認(rèn)識(shí),并且對(duì)自身存在的問題也有了更明確的了解,利于今后有針對(duì)性的進(jìn)行解決。
先來說一說我通過這次送課下鄉(xiāng),對(duì)數(shù)學(xué)教學(xué)的一些方法性認(rèn)識(shí)。首先就是“生生互動(dòng)”。“師生互動(dòng)”在我的課堂上體現(xiàn)的應(yīng)該是比較多的,但是通過叢老師和夏主任等老師的評(píng)課,我更深刻的體會(huì)到了,現(xiàn)在的課堂更加需要的事“生生互動(dòng)”。要給學(xué)生更多的話語權(quán)和自由度。這節(jié)課,其實(shí)我也嘗試了讓學(xué)生之間去交流,比如說各種小組合作,同桌合作,還有學(xué)生回答問題遇到困難的時(shí)候自己找其他同學(xué)幫助等方式,但是感覺還是停留在表層,沒有深入進(jìn)去。這點(diǎn)在以后的教學(xué)中應(yīng)該引以為戒。
“個(gè)教育”的初步嘗試。在課堂上,如何體現(xiàn)個(gè)教育。決定不單單是出示幾個(gè)簡(jiǎn)單的分層練習(xí),更重要的事要有對(duì)知識(shí)點(diǎn)的分層,對(duì)全體學(xué)生具體學(xué)習(xí)情況的一種把握。個(gè)教育,更要求老師把握學(xué)生的實(shí)際情況,因人而異,因班而異。本節(jié)課,在探究圓柱體積公式的時(shí)候,我當(dāng)時(shí)讓學(xué)生討論了兩種方法,一種是底面積乘高,一種是底面周長(zhǎng)一半乘高乘半徑。這樣一講,反而起到了時(shí)而其反的效果,本來學(xué)生挺明白的了,一講,反而有學(xué)生糊涂了,這是因?yàn)闃蝾^整體學(xué)生水平還不是太高,造成的問題。
下面我具體談?wù)剬?duì)本節(jié)課的教學(xué)設(shè)計(jì)和教學(xué)過程的一些反思:
圓柱的體積這部分知識(shí)是學(xué)生在有了圓柱、圓和長(zhǎng)方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在設(shè)計(jì)教案的時(shí)候,我比較注意以下幾點(diǎn):一、抓住新舊知識(shí)的聯(lián)系,利用轉(zhuǎn)化的方法,通過想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,讓學(xué)生自己探究出圓柱的體積計(jì)算公式。二、創(chuàng)設(shè)貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)“從生活中來到生活中去”的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和。三、設(shè)計(jì)練習(xí)的時(shí)候注重多層次問題,以及開放性問題的設(shè)計(jì),滿足不同程度學(xué)生的需求,將練習(xí)的選擇權(quán)利放手給學(xué)生,特別是星級(jí)題目的方式,讓學(xué)生感到很新奇,激發(fā)了學(xué)生挑戰(zhàn)難題的欲望,和解決問題的熱情。四、培養(yǎng)學(xué)生問題意識(shí)!皢栴}是數(shù)學(xué)的心臟!睂W(xué)生有了問題,才會(huì)思考和探索,有探索才會(huì)有發(fā)展。所以我整堂課的設(shè)計(jì)都是用一個(gè)一個(gè)的問題串起來的,特別是導(dǎo)課的時(shí)候用一次一次的質(zhì)疑,將學(xué)生的積極性都調(diào)動(dòng)起來了,營(yíng)造出一種學(xué)生想要迫切探究圓柱體積計(jì)算方法的氛圍。這些都是我這節(jié)課的一些比較成功的地方。當(dāng)然這節(jié)課也留下了很多的遺憾:首先就是以往上課語言表達(dá)的問題再次被點(diǎn)了出來,這次雖然較以往說話語速過慢變成了較快了,可是還是沒有什么高低起落調(diào),所以讓聽課的學(xué)生和老師都感覺缺少激情,這個(gè)問題應(yīng)該盡快解決。再就是,課堂上,對(duì)學(xué)生的放手不夠,學(xué)生的自主權(quán)還是欠缺的,新的理念告訴我們,學(xué)生已不是課堂教學(xué)中的聽眾、觀眾、知識(shí)的接受者,而需要成為課堂教學(xué)的主動(dòng)參與者、問題者、自主者、合作者,所以在今后的教學(xué)中要著重增加學(xué)生的自主權(quán),讓學(xué)生自己提問題,自己解決問題,遇到困難先求助同學(xué)。老師一引導(dǎo)為主,在教學(xué)設(shè)計(jì)的時(shí)候,要敢于給學(xué)生廣闊的空間,本節(jié)課,在引導(dǎo)學(xué)生猜想解決圓柱體積問題的時(shí)候,我先給學(xué)生復(fù)習(xí)了圓轉(zhuǎn)化為長(zhǎng)方形的過程,從一定程度上,限制了學(xué)生的思維。如果能把這個(gè)環(huán)節(jié)改為溫馨提示性質(zhì)的小提醒,效果就會(huì)截然不同了。
作為一名青年教師,要抓住每一次這樣的機(jī)會(huì),去積極認(rèn)真的準(zhǔn)備課,全身投入的上課,還要深刻,認(rèn)真的反思,在不反思中提高、在反思中對(duì)癥下藥。
《圓柱的體積》教學(xué)設(shè)計(jì)7
一、復(fù)習(xí)導(dǎo)入
1、回顧上節(jié)課內(nèi)容,提問:圓柱的特征,圓柱的表面積計(jì)算方法。
導(dǎo)入:這節(jié)課我們學(xué)習(xí)圓柱的體積、
2、想一想,提問:什么叫做體積?我們學(xué)過哪些物體的體積計(jì)算公式?
。ㄎ矬w所占空間的大小叫做體積、學(xué)過長(zhǎng)方體正方體的、)
它們的計(jì)算公式是什么?可以歸納為:
長(zhǎng)(正)方體的體積===底面積*高
3、想一想:圓面積計(jì)算公式的推導(dǎo)過程、
。ò褕A面積轉(zhuǎn)化為一個(gè)近似的長(zhǎng)方形的面積,從而推導(dǎo)出圓面積的計(jì)算公式)
那么,能不能把圓柱轉(zhuǎn)化為我們已學(xué)過的圖形來計(jì)算它的體積?
二、新授:
敘:以上研究圓面積計(jì)算公式的方法叫做割補(bǔ)法,這種方法也適用于推導(dǎo)圓柱體積的計(jì)算公式、下面請(qǐng)同學(xué)們打開課本看書自學(xué)。
演示并提問:
。1)拼成的長(zhǎng)方體的體積與圓柱的體積有什么關(guān)系?
(2)拼成的長(zhǎng)方體的底面積與圓柱的哪部分有關(guān)系?有什么關(guān)系?
。3)拼成的長(zhǎng)方體的高與圓柱的哪部分有關(guān)系?有什么關(guān)系?
總結(jié):長(zhǎng)方體的體積與圓柱的體積相等,長(zhǎng)方體的底面積與圓柱的底面積相等,長(zhǎng)方體的高與圓柱的高相等。
因?yàn)椋簣A柱的體積===長(zhǎng)方體的體積
長(zhǎng)方體的`體積===底面積*高
↓↓↓
所以:圓柱的體積===底面積*高
用字母表示為:v==sh
運(yùn)用以上公式,完成練習(xí)題、
。ㄗ⒁猓?jiǎn)挝灰y(tǒng)一,要認(rèn)真審題,認(rèn)真計(jì)算、)
動(dòng)腦筋,思考以下幾個(gè)問題:
已知如下條件,如何求圓柱的體積?
。1)底面積s、高h(yuǎn)→→體積v==
。2)底面半徑r、高h(yuǎn)→→體積v==
。3)底面直徑d、高h(yuǎn)→→體積v==
。4)底面周長(zhǎng)c、高h(yuǎn)→→體積v==
強(qiáng)調(diào):圓柱的體積v=sh=rh,在沒有告訴底面積和高時(shí),要先找底面半徑和高,應(yīng)用v=rh去計(jì)算。
三、鞏固練習(xí)(填表)
hvs=20平方分米
4分米
r=5厘米
10厘米
d=8分米
6分米
c=12、56米
2米
四、課堂小結(jié)
同學(xué)們,通過這堂課的學(xué)習(xí)你知道了些什么?誰來說一下。
回答得非常好,下去以后可以應(yīng)用所學(xué)知識(shí)去解答一些實(shí)際問題。
板書設(shè)計(jì):
圓柱的體積
圓柱的體積===底面積*高
↓↓↓
長(zhǎng)方體的體積===底面積*高v==sh
作業(yè)設(shè)計(jì):完成習(xí)題
《圓柱的體積》教學(xué)設(shè)計(jì)8
評(píng)價(jià)樣題:
學(xué)習(xí)流程:
一、創(chuàng)設(shè)現(xiàn)實(shí)情境,增強(qiáng)探究欲望。
1、出示橡皮泥做的圓柱體:怎樣求出這個(gè)圓柱體橡皮泥的體積?你能想出幾種辦法?
如果要求(出示百家姓廣場(chǎng)上的圓柱形大鼎底座圖片)圓柱形大鼎底座的體積,還能用剛才那樣的方法嗎?那怎么辦?(學(xué)生試說出自己的辦法。)
看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個(gè)解決任意圓柱體積的方法才行,對(duì)嗎?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、親歷建構(gòu)過程,提高探索能力。
1、提出問題,大膽猜想
你能猜一猜圓柱的體積怎樣計(jì)算嗎?你覺得圓柱體積的大小和什么有關(guān)?
。ü膭(lì)學(xué)生大膽猜測(cè),說出自己的想法)
2、回顧舊知,幫助遷移
同學(xué)們都很會(huì)大膽猜想,但還要小心地論證猜想的科學(xué)性。你還記得圓面積轉(zhuǎn)化什么圖形的面積來求它的公式的嗎?
。ㄑ菔菊n件:圓轉(zhuǎn)化成長(zhǎng)方形)
3、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學(xué)過的立體圖形來計(jì)算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?
4、小組合作,驗(yàn)證猜想
下面請(qǐng)大家四人一組,借助手中的學(xué)具或用蘿卜和土豆做成的圓柱分組進(jìn)行探討。
。ǔ鍪竞献魈峋V)小組長(zhǎng)做好分工,并完成記錄表。
活動(dòng)記錄表
思考:
1、圓柱體可以轉(zhuǎn)化成哪種立體圖形?
2、兩種立體圖形之間有怎樣的聯(lián)系?你們發(fā)現(xiàn)了什么?得出了什么結(jié)論?
3、怎樣用簡(jiǎn)捷的形式表示你推導(dǎo)出來的公式呢?
活動(dòng)過程:
1、我們用方法,把圓柱體轉(zhuǎn)化成了體。
2、在這個(gè)轉(zhuǎn)化的過程中,變了,沒有變。
3、通過觀察比較,我們發(fā)現(xiàn):把一個(gè)圓柱體的底面分成許多相等的扇形,然后切、拼,就能得到一個(gè)近似的長(zhǎng)方體。這個(gè)長(zhǎng)方體的'底面積等于圓柱體的(),高就是圓柱體的()。因?yàn)椋L(zhǎng)方體體積=(),所以,圓柱體的體積計(jì)算公式是v=()。
5、全班交流,展示評(píng)價(jià)。
評(píng)價(jià)交流中,借助評(píng)價(jià)樣題。同時(shí)課件演示切拼的過程,同時(shí)演示將圓柱底面等分成32份、64份……,讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。 6、根據(jù)學(xué)生的發(fā)現(xiàn)引導(dǎo)學(xué)生推導(dǎo)出:
圓柱的體積=底面積×高,
用字母表示v = sh。
7、反饋練習(xí)。
。1)要求圓柱體積,必須知道哪些條件?
。2)出示例5,學(xué)生借助圓柱體積公式自主完成,并及時(shí)訂正反饋。
圓柱的體積教學(xué)設(shè)計(jì) 相關(guān)內(nèi)容:用轉(zhuǎn)化的策略解決分?jǐn)?shù)問題“長(zhǎng)方體和正方體的表面積”的教學(xué)實(shí)錄小學(xué)數(shù)學(xué)《倒數(shù)的認(rèn)識(shí)》教案北師大版6年級(jí)數(shù)學(xué)第11冊(cè)第1單元《圓的認(rèn)識(shí)》教案1、分?jǐn)?shù)四則混合運(yùn)算《按比例分配》課后反思百分?jǐn)?shù)的意義和讀寫法反思百分?jǐn)?shù)(三)用百分?jǐn)?shù)解決問題查看更多>>小學(xué)六年級(jí)數(shù)學(xué)教案
《圓柱的體積》教學(xué)設(shè)計(jì)9
教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識(shí)和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時(shí)讓學(xué)生通過實(shí)驗(yàn)來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體
積等于和它等底等高的圓柱體積的三分之一,并能運(yùn)用這個(gè)關(guān)系計(jì)算圓錐的體積,讓學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí)。
我讓學(xué)生觀察,先猜測(cè)圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實(shí)物圖形到空間圖形,采用對(duì)比的方法,不斷加深學(xué)生對(duì)形體的認(rèn)識(shí)。然后讓學(xué)生動(dòng)手實(shí)驗(yàn):有的組用捏橡皮泥的方法,有的'組用到沙子的方法;有的組用計(jì)算的方法。讓孩子親歷教學(xué)的驗(yàn)證過程,從實(shí)驗(yàn)中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時(shí)候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時(shí)候,圓柱和圓錐又會(huì)有什么樣的關(guān)系?這樣,就有一種水到渠成的感覺。對(duì)圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實(shí)際的生活問題,起到鞏固深化知識(shí)點(diǎn)的作用。
圓錐的體積這節(jié)課的教學(xué)具有下面的特點(diǎn),一是在教學(xué)新課時(shí),沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實(shí)驗(yàn),而是通過師生交流、問答、猜想等形式,調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然;二是在實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動(dòng)手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,即動(dòng)手操作,又動(dòng)腦思考,努力探索圓錐體積的計(jì)算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)
在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實(shí)驗(yàn)的學(xué)生不多,如果每個(gè)小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的方式使每個(gè)學(xué)生都能真切的參與到探究中去,這樣每個(gè)學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個(gè)學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會(huì)了知識(shí),更重要的是培養(yǎng)了學(xué)生的能力。
教材中圓錐體積的相對(duì)練習(xí)較少,但在考試?yán)锩鎸?shí)際解決問題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時(shí)練習(xí)。教學(xué)中的一組填空題,對(duì)于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價(jià)值。通過練習(xí),學(xué)生們明確了圓柱與等底等高的圓錐體積和為4個(gè)圓錐的體積(或三分之四個(gè)圓柱的體積),而它們的體積相差2個(gè)圓錐的體積(或三分之二個(gè)圓柱的體積)??。掌握這些知識(shí)對(duì)于解決實(shí)際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計(jì)算簡(jiǎn)便。
教學(xué)的最后我與孩子們一起通過大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計(jì)算是教學(xué)的重點(diǎn)和難點(diǎn),也是考試中學(xué)生容易丟分的危險(xiǎn)高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺方為最高層次!
《圓柱的體積》教學(xué)設(shè)計(jì)10
一、教學(xué)對(duì)象及學(xué)習(xí)內(nèi)容特點(diǎn)分析:
圓柱的體積是小學(xué)立體幾何圖形中的重要內(nèi)容之一,是已學(xué)的長(zhǎng)方體知識(shí)和將學(xué)的圓椎體知識(shí)的橋梁,其公式是長(zhǎng)方體、正方體體積公式V=Sh的延續(xù)。
二、教學(xué)目的:
學(xué)生能借助媒體提供的資源理解和掌握?qǐng)A柱體積的計(jì)算公式。
學(xué)生能應(yīng)用圓柱體積公式進(jìn)行圓柱體積的計(jì)算。
學(xué)生能利用知識(shí)之間相互"轉(zhuǎn)化"的思想探索解決新的問題。
三、教學(xué)基本指導(dǎo)思想、教學(xué)策略和方法:整個(gè)過程,充分利用計(jì)算機(jī)的優(yōu)點(diǎn),以小組學(xué)習(xí)的形式,發(fā)揮學(xué)生的主體作用,教師是學(xué)生學(xué)習(xí)過程的組織者和輔導(dǎo)者。長(zhǎng)方體的體積公式和平面圖形的面積公式已學(xué)過,因此引導(dǎo)學(xué)生用轉(zhuǎn)化的思想去學(xué)習(xí),并創(chuàng)設(shè)情景,讓學(xué)生自己發(fā)現(xiàn)問題,利用電腦、課本、實(shí)物提供的資源協(xié)商解決問題,使全體學(xué)生都成為學(xué)習(xí)的主人。
四、教學(xué)運(yùn)用的主要手段、技術(shù)、材料:電腦網(wǎng)絡(luò)、實(shí)物投影、圓柱體。
五、教學(xué)過程的設(shè)想和點(diǎn)評(píng)
教師的教學(xué)行為學(xué)生的學(xué)習(xí)行為點(diǎn)評(píng)
第一階段:創(chuàng)設(shè)情景,設(shè)疑引趣。
教師故事引入:圓柱形狀的"轉(zhuǎn)筆刀"和"漿糊筆"迎著朝陽高高興興上學(xué)了,走著走著,它們就為哪個(gè)體積大而爭(zhēng)論起來,"轉(zhuǎn)筆刀"很自信地說:"看我這么胖,肯定是我的體積大!""漿糊筆"很不服氣地說:"我比你高多了,一定是我的體積大!"就這樣你一言我一語,爭(zhēng)論了很久還沒個(gè)結(jié)果。
提問:小組討論尋找解決這兩個(gè)圓柱體積大小的方法。
1、學(xué)生小組討論解決的方法。
2、小結(jié)歸納:解決圓柱的體積的方法:尋找一種方法,導(dǎo)出圓柱的體積公式,然后應(yīng)用公式求圓柱的體積。
通過情景的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習(xí)熱情,讓他們發(fā)現(xiàn)問題,并通過討論找出解決的方法,使學(xué)生從被動(dòng)學(xué)習(xí)變?yōu)橹鲃?dòng)學(xué)習(xí),學(xué)生對(duì)這節(jié)課的學(xué)習(xí)也從宏觀上得到了解。學(xué)生解決問題的方法有出人意料的回答,老師根據(jù)情況,給予恰當(dāng)?shù)墓膭?lì)性的評(píng)價(jià),以激發(fā)學(xué)生的思維。
第二階段: 自主探究。概括規(guī)律
1、電腦提供學(xué)生探索資源:
。1)平面圖形(長(zhǎng)方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長(zhǎng)方體、正方體)體積公式的導(dǎo)出過程。
。2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個(gè)近似的長(zhǎng)方體。
2、學(xué)生反饋?zhàn)詫W(xué)內(nèi)容,師生共同導(dǎo)出圓柱的體積公式V=Sh1、學(xué)生打開電腦"自能學(xué)習(xí)"中的"尋方法",有選擇地看學(xué)過的平面圖形的面積公式和立體圖形體積公式的導(dǎo)出過程,從中找到推導(dǎo)圓柱體積公式的方法
2、學(xué)生通過觀察圓柱公式的推導(dǎo)過程。
3、小組討論填寫實(shí)驗(yàn)報(bào)告。
4、師生導(dǎo)出圓柱的體積公式后,學(xué)生自學(xué)課本例題,并完成例4內(nèi)容。通過利用資源、自能學(xué)習(xí),讓全體學(xué)生都能動(dòng)腦、動(dòng)口、動(dòng)手參與到學(xué)習(xí)中去,使學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)協(xié)作,所學(xué)知識(shí)的理解更為深刻、透徹。在自學(xué)的過程中教師通過監(jiān)控密切觀察著學(xué)生的學(xué)習(xí)情況,發(fā)現(xiàn)問題及時(shí)解決。
圓柱體積公式的推導(dǎo)過程,學(xué)生會(huì)有不同的方法,如用課本的方法或用類比的方法,教師應(yīng)給予恰當(dāng)?shù)脑u(píng)價(jià)。
第三階段:拓展公式,自能訓(xùn)練。
1、公式拓展。
在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?
2、教師小結(jié):無論已知圓柱的底面半徑、直徑還是底面周長(zhǎng),我們都必須根據(jù)V=Sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。
3、質(zhì)疑
1、學(xué)生可根據(jù)已學(xué)的"圓的面積"公式導(dǎo)出。
(當(dāng)已知圓柱底面的半徑時(shí)V=∏r2h、當(dāng)已知直徑時(shí)V=∏(d÷2)2h、當(dāng)已知周長(zhǎng)時(shí),先求半徑,再求底面積,然后求圓柱體積。
2、判斷。并說明原因
。1) 一個(gè)圓柱體的底面積是8平方厘米,高是6厘米,這個(gè)圓柱體的體積是48立方厘米。
(2) 一個(gè)圓柱的底面積是10平方米,高是10米,它的體積是100平方米。
。3) 一個(gè)圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。 列式是:3.14×22×3
1、根據(jù)生活實(shí)際,當(dāng)知道圓柱底面半徑、直徑或周長(zhǎng)時(shí),怎樣求圓柱的體積這個(gè)問題,可以讓學(xué)生充分拓展思維,不要停留在只會(huì)死記公式、生搬硬套的低層次上。并大力鼓勵(lì)、表揚(yáng)愛動(dòng)腦筋的同學(xué)
2、通過練習(xí),學(xué)生對(duì)基本知識(shí)有一定的理解,教師也了解了學(xué)生對(duì)知識(shí)的掌握情況。
第四階段:反饋學(xué)習(xí)、應(yīng)用提高。
1、提出練習(xí)要求:先做"鞏固"練習(xí),有余力的再做"提高"練習(xí)。
2、小結(jié)練習(xí)情況,及時(shí)表揚(yáng)對(duì)而快的同學(xué)及小組
3、回應(yīng)開頭,解決"漿糊筆"和"轉(zhuǎn)筆刀"爭(zhēng)論的問題。學(xué)生在電腦上完成。
1、賽車游戲:看誰跑得快。
。1)圓柱的底面積是15平方米,高是3米,體積是( )立方米。
。2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是( )平方厘米。
(3)一個(gè)圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個(gè)糧囤能裝稻谷( )立方米。
(4)一個(gè)圓柱的體積是80立方分米,底面積是16平方分米,它的高是( )分米。
2、提高練習(xí)?寄阒腔郏嚎凑l攀得高。
。1)一個(gè)圓柱,它的底面直徑4厘米,高是3米,體積是( )立方厘米。
(2)一個(gè)圓柱體鐵架,它的底面周長(zhǎng)是62.8分米,高是6分米,它的體積是( )立方分米。
在計(jì)算過程中,學(xué)生會(huì)遇到不少問題,可通過師生交流或小組互相幫助解決,從而實(shí)現(xiàn)互幫、互學(xué)共同提高。
六、歸納總結(jié)、自我評(píng)價(jià)。
1、提出要求,學(xué)生談收獲。
2、總結(jié)本節(jié)情況。 談收獲,并作出自我評(píng)價(jià)。通過談收獲,體現(xiàn)學(xué)習(xí)的自主性,體驗(yàn)獲得成功的樂趣。
七、對(duì)教學(xué)過程的'設(shè)想和點(diǎn)評(píng):
新課程標(biāo)準(zhǔn)注重小學(xué)生對(duì)周圍世界與生俱來的探究興趣和需要,在小學(xué)階段,學(xué)生的知識(shí)積累與思維能力較為有限,強(qiáng)調(diào)用符合小學(xué)生年齡特點(diǎn)的方式學(xué)習(xí),提倡課程貼近小學(xué)生的生活,這節(jié)課從學(xué)生身邊學(xué)習(xí)用品"卷筆刀"和"漿糊筆"的入手,通過擬人的方式,由它們上學(xué)過程中引起的爭(zhēng)論導(dǎo)出學(xué)習(xí)的內(nèi)容,激發(fā)學(xué)生學(xué)習(xí)的積極性。這樣在教學(xué)進(jìn)程中安排好相關(guān)的情景組織學(xué)生參與其中,親歷過程,自主地開展活動(dòng),通過看、做、玩、想等方式,讓學(xué)生既學(xué)會(huì)知識(shí)與技能,又培養(yǎng)智能、情感態(tài)度與價(jià)值觀,促進(jìn)學(xué)生科學(xué)素養(yǎng)的形成。
新課標(biāo)還積極倡導(dǎo)讓學(xué)生親身經(jīng)歷以探究為主的學(xué)習(xí)活動(dòng),培養(yǎng)他們的好奇心和探究欲,使他們學(xué)會(huì)探究解決問題的策略,為他們終身的學(xué)習(xí)和生活打好基礎(chǔ)。這是一節(jié)在網(wǎng)絡(luò)環(huán)境下開展的探究型數(shù)學(xué)課,引入后,教師則大膽放手,營(yíng)造了一個(gè)開放的探究空間,通過學(xué)生小組討論尋找比較圓柱大小的方法,引導(dǎo)學(xué)生通過自主、合作探究這種學(xué)習(xí)方式進(jìn)行實(shí)踐活動(dòng),觀察由圓柱轉(zhuǎn)變成已學(xué)過長(zhǎng)方體的過程,在觀察中相互啟發(fā),共同提高,形成共識(shí)后并加以記錄。再將大家的記錄結(jié)果對(duì)比、討論、從而得出結(jié)論:圓柱的體積=轉(zhuǎn)變成的長(zhǎng)方體的體積,從而導(dǎo)出圓柱的體積公式V=SH。在這一過程中,教師以學(xué)生的發(fā)展為本,關(guān)注每一位的發(fā)展,珍視每位學(xué)生的探究體驗(yàn)及獨(dú)特見解,在學(xué)生探究結(jié)果的表述過程中,對(duì)同一個(gè)問題,不同的人可以得出不同的結(jié)論,他們通過互相交流互相討論,思維更是得到發(fā)展與創(chuàng)新。不僅激發(fā)了每一位學(xué)生主動(dòng)參與探究實(shí)踐活動(dòng),更讓學(xué)生在探究中學(xué)會(huì)合作、懂得思考、大膽發(fā)表自己的獨(dú)特見解,更學(xué)會(huì)傾聽、尊重他人的意見,從而實(shí)現(xiàn)互幫、互學(xué)共同提高,并在探究中發(fā)現(xiàn)、學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)的興趣,培養(yǎng)了實(shí)踐的能力。
網(wǎng)絡(luò)環(huán)境下的教學(xué)方式不僅改變了以往教師滿堂灌的現(xiàn)象,在拓寬學(xué)生知識(shí)面的同時(shí),更培養(yǎng)了學(xué)生搜集信息、處理信息并進(jìn)行合理解釋的能力,大大地激發(fā)了學(xué)生自主學(xué)習(xí)的積極性,學(xué)生的創(chuàng)新意識(shí)日漸增強(qiáng),真正實(shí)現(xiàn)了利用信息技術(shù)為教學(xué)內(nèi)容服務(wù)。
《圓柱的體積》教學(xué)設(shè)計(jì)11
教材版本
《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》 (人教版) 六年級(jí)數(shù)學(xué)下冊(cè)。
課程標(biāo)準(zhǔn)摘錄
1、結(jié)合具體情境,探索并掌握長(zhǎng)方體、正方體、圓柱體的體積和表面積以及圓錐體體積的計(jì)算方法。
2、探索某些實(shí)物體積的測(cè)量方法。
學(xué)情與教材分析
“圓柱的體積” 是人教版六年級(jí)下冊(cè)“圓柱和圓錐”這一單元的第四節(jié)的內(nèi)容,在學(xué)習(xí)本節(jié)內(nèi)容之前,學(xué)生已經(jīng)認(rèn)識(shí)了圓柱,學(xué)習(xí)了體積,經(jīng)歷了長(zhǎng)、正方體的體積推導(dǎo)過程以及圓面積公式的推導(dǎo)過程。在推導(dǎo)圓柱的體積公式時(shí),把圓柱體轉(zhuǎn)化成長(zhǎng)方體,高并沒有變,只是把底面的圓形轉(zhuǎn)化成長(zhǎng)方形,它的轉(zhuǎn)化過程實(shí)際上和圓轉(zhuǎn)化成長(zhǎng)方形求面積的方法相同,學(xué)生已具備有學(xué)習(xí)本課的技能。教學(xué)中不僅要讓學(xué)生知道圓柱體積計(jì)算公式是什么,而且要讓學(xué)生主動(dòng)探索、經(jīng)歷圓柱體體積計(jì)算公式的推導(dǎo)過程,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。
學(xué)習(xí)目標(biāo)
1、經(jīng)歷探究和推導(dǎo)圓柱的體積計(jì)算公式的過程,理解并掌握?qǐng)A柱體積計(jì)算方法,并能正確計(jì)算圓柱體積,達(dá)標(biāo)率100%。
2、能運(yùn)用圓柱的體積計(jì)算方法,解決有關(guān)的實(shí)際問題,發(fā)展學(xué)生的實(shí)踐能力,達(dá)標(biāo)率95%。
3、能積極參與圓柱體積計(jì)算公式推導(dǎo)活動(dòng),能有條理地、清晰地闡述活動(dòng)過程,發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力,達(dá)標(biāo)率95%。
4、激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗(yàn)成功的快樂,達(dá)標(biāo)率100%。
5、培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想,達(dá)標(biāo)率95%。
學(xué)習(xí)重點(diǎn)
圓柱的體積計(jì)算方法
學(xué)習(xí)難點(diǎn)
圓柱體積計(jì)算公式的推導(dǎo)。
教具、學(xué)具準(zhǔn)備:
1、師:圓柱體積計(jì)算公式推導(dǎo)教具,課件。
2、生:削好的圓柱體蘿卜或土豆、或圓柱體橡皮泥,小刀。
教學(xué)設(shè)想
本節(jié)課第一個(gè)環(huán)節(jié)激活舊知、引出新知,采用復(fù)習(xí)長(zhǎng)方體、正方體的體積公式,圓面積計(jì)算公式的推導(dǎo)過程,從轉(zhuǎn)化的思想、方法上為推導(dǎo)圓柱的體積公式做一些鋪墊。第二個(gè)環(huán)節(jié)自主合作、探索新知,采用了激趣設(shè)疑的方法層層深入,調(diào)動(dòng)同學(xué)們學(xué)習(xí)的熱情,激發(fā)學(xué)生探究的欲望。學(xué)生積極合作交流,主動(dòng)參與到圓柱體積計(jì)算公式的推導(dǎo)過程中,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。然后通過例題教學(xué)加深對(duì)圓柱的體積公式的理解,體會(huì)計(jì)算公式在實(shí)際生活中的應(yīng)用,發(fā)展學(xué)生的實(shí)踐能力。第三個(gè)環(huán)節(jié)鞏固練習(xí)、拓展提高,采用了分層教學(xué)的方法,設(shè)計(jì)的練習(xí)題由易到難,這樣設(shè)計(jì)的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。通過本節(jié)課的教學(xué),學(xué)生在自主探索和合作交流過程中真正理解和掌握數(shù)學(xué)的知識(shí)與技能、特別是讓學(xué)生獲得數(shù)學(xué)的思想和方法,獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),同時(shí)陶冶了情操。
教法、學(xué)法
演示法、啟發(fā)引導(dǎo);實(shí)驗(yàn)、合作探究、嘗試練習(xí)。
評(píng)價(jià)方案
1、通過小組合作實(shí)驗(yàn)完成活動(dòng)檢測(cè)目標(biāo)1、4、5的達(dá)成。
2、通過提問檢測(cè)目標(biāo)3、4、5的達(dá)成。
3、通過評(píng)價(jià)樣題檢測(cè)目標(biāo)1、2、4的達(dá)成。
評(píng)價(jià)樣題
1、
2、
教學(xué)過程
一、激活舊知,引出新知
1、計(jì)算下面物體的體積
。1)長(zhǎng)方體的長(zhǎng)20厘米,寬10厘米,高8厘米。
。2)正方體棱6分米
2、回憶一下圓面積的計(jì)算公式是如何推導(dǎo)出來的?
[學(xué)情預(yù)設(shè):學(xué)生可能說出通過分割、拼合的辦法變成長(zhǎng)方形或者平行四邊形,或者三角形,或者梯形來推導(dǎo)出圓的面積。這時(shí)教師要及時(shí)總結(jié)不論是拼成哪種圖形都是把圓轉(zhuǎn)化成已學(xué)過面積計(jì)算的圖形,再根據(jù)轉(zhuǎn)化后的圖形與圓各部分之間的關(guān)系推導(dǎo)出它的面積。]
教師(結(jié)合課件演示)把一個(gè)圓平均分割,再拼合就變成了一個(gè)近似的平行四邊形,分的份數(shù)越多越接近一個(gè)長(zhǎng)方形。長(zhǎng)方形的.長(zhǎng),相當(dāng)于圓周長(zhǎng)的一半,長(zhǎng)方形的寬相當(dāng)于圓的半徑。因?yàn)殚L(zhǎng)方形的面積=長(zhǎng)×寬,所以,用圓周長(zhǎng)的一半×半徑就可以求出圓的面積,周長(zhǎng)一半就等于πR,半徑是R,所以圓的面積是S=πR。
[設(shè)計(jì)意圖:從轉(zhuǎn)化的思想、方法上為推導(dǎo)圓柱的體積公式做一些鋪墊。]
3、什么叫體積?如何求長(zhǎng)方體的體積?如何求正方體的體積?長(zhǎng)方體和正方體的通用公式是什么?
。墼O(shè)計(jì)意圖:為定義圓柱體的體積,為推導(dǎo)圓柱體的體積公式做知識(shí)上的鋪墊。]
板書:長(zhǎng)方體的體積=底面積×高.
。墼O(shè)計(jì)意圖:原有的基礎(chǔ)是后續(xù)學(xué)習(xí)的前提和起點(diǎn),新知總是在舊知的基礎(chǔ)上生長(zhǎng)發(fā)展的。這種承上啟下的關(guān)系決定了我們的教學(xué)必須從學(xué)生原有的認(rèn)知結(jié)構(gòu)出發(fā),找準(zhǔn)新舊知識(shí)的連接點(diǎn),為新課的學(xué)習(xí)做好思想方法與知識(shí)的鋪墊。]
圓柱體也有體積,說一說什么是圓柱的體積?學(xué)生交流后匯報(bào)。
板書:圓柱體所占空間的大小叫做圓柱的體積。
師:這節(jié)課,我們就來學(xué)習(xí)圓柱的體積.(板書課題:圓柱的體積)
二、自主合作,探索新知
1.求圓柱體容器中水的體積
出示長(zhǎng)方體容器:?jiǎn)枺@是什么?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出長(zhǎng)方體容器。]
問:怎么求長(zhǎng)方體容器中水的體積呢?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出量出它所容納水的長(zhǎng)、寬、高,就可以求出水的體積。] 問:如果換成圓柱體容器又如何求其中水的體積呢?
[學(xué)情預(yù)設(shè):學(xué)生可能說出,把圓柱體容器中的水倒入長(zhǎng)方體容器,量出長(zhǎng)方體容器所容納水的長(zhǎng)、寬、高,就可以求出圓柱體容器中水的體積。](演示:把圓柱體容器中的水倒入長(zhǎng)方體容器)
2.橡皮泥圓柱體的體積
(出示橡皮泥做成的圓柱體)
問:這是一個(gè)什么樣的立體圖形?
問:它是用橡皮泥做成的。你能想辦法求出它的體積嗎?
。蹖W(xué)情預(yù)設(shè):學(xué)生可能說出把這個(gè)圓柱體捏成一個(gè)長(zhǎng)方體,從而量出長(zhǎng)方體的長(zhǎng)、寬、高,求出這個(gè)圓柱的體積。]
3.常用圓柱的體積.
課件出示圓柱體壓路機(jī)的滾筒的圖片。
問:壓路機(jī)的滾筒是一個(gè)很大的的圓柱體,你又如何求出它的體積呢?
[設(shè)計(jì)意圖:用圓柱體容器所盛的沒有形狀的水到可以變形的圓柱形橡皮泥,這些都可以轉(zhuǎn)化的辦法轉(zhuǎn)化為長(zhǎng)方體來求出體積,這一過程就是要逐步滲透把圓柱體轉(zhuǎn)化為長(zhǎng)方體的方法和思想,這樣從思想上、方法上給學(xué)生一個(gè)思維的臺(tái)階。當(dāng)出示圓柱體壓路機(jī)的滾筒圖片后,由于前面的物體是可以變形的,而壓路機(jī)的滾筒是不可以變形的,學(xué)生想不出解決的辦法,學(xué)生處于憤悱狀態(tài),對(duì)學(xué)生來說解決求壓路機(jī)的滾筒體積具有很強(qiáng)的挑戰(zhàn)性,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性。這樣設(shè)計(jì),為后面同學(xué)們操作、討論推導(dǎo)圓柱的體積從思想方法上作了進(jìn)一步的鋪墊,并通過構(gòu)造認(rèn)知沖突,層層深入,調(diào)動(dòng)同學(xué)們學(xué)習(xí)的熱情,激發(fā)學(xué)生探求的欲望。這樣,對(duì)學(xué)生思想方法的鋪墊也已水到渠成。]
小結(jié):看來我們以上的方法求圓柱的體積有它的局限性,所以必須探究求圓柱體積的一般規(guī)律。
4.探究規(guī)律
問:圓我們可以通過分割、拼合轉(zhuǎn)化成已學(xué)過的長(zhǎng)方形面積計(jì)算公式的圖形推導(dǎo)出圓的面積,圓柱體能不能也轉(zhuǎn)化成已學(xué)過體積的圖形來求出它的體積呢?下面請(qǐng)四人小組討論,圍繞下面幾個(gè)問題進(jìn)行討論、操作:
課件出示操作討論提綱:
。1)圓柱體可以轉(zhuǎn)化為什么樣的立體圖形?
。2)轉(zhuǎn)化后的立體圖形體積與圓柱的體積大小是否有變化?
。3)轉(zhuǎn)化后的形體與與原來圓柱體各部分間的對(duì)應(yīng)關(guān)系,推導(dǎo)出圓柱的體積。
學(xué)生討論,教師參與小組討論、點(diǎn)撥、操作。
問:下面哪個(gè)小組來先進(jìn)行匯報(bào)。
各組派代表邊匯報(bào)邊演示。
。蹖W(xué)情預(yù)設(shè):學(xué)生可能會(huì)說圓柱體可以轉(zhuǎn)化為長(zhǎng)方體,轉(zhuǎn)化后的長(zhǎng)方體不是標(biāo)準(zhǔn)的長(zhǎng)方體,只有把圓柱分割的份數(shù)多一些,才可以拼成一個(gè)標(biāo)準(zhǔn)的長(zhǎng)方體。因?yàn)殚L(zhǎng)方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長(zhǎng)方體的體積,也就相當(dāng)于求出了圓柱體的體積。長(zhǎng)方體的體積等于圓柱體的體積,長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高相當(dāng)于圓柱體的高。因?yàn)殚L(zhǎng)方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。]
問:誰還有補(bǔ)充?(學(xué)生補(bǔ)充講解)
教師拿兩個(gè)相同的圓柱體體積演示模型演示,邊演示邊講解。
師:同學(xué)們看,老師這里有兩個(gè)圓柱體,它們的底相同,高也完全相同,這是兩個(gè)完全相同的圓柱體。我把其中的一個(gè)沿著它的底面直徑剪開,兩等分、四等分、八等分、十六等分,還可以繼續(xù)分割,通過分割、拼合,把圓柱體轉(zhuǎn)化成近似的長(zhǎng)方體,如果我把它分割的份數(shù)越多,拼成的圖形就越接近長(zhǎng)方體。因?yàn)殚L(zhǎng)方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長(zhǎng)方體的體積,也就相當(dāng)于求出了圓柱體的體積。
結(jié)合課件演示講解。
師:長(zhǎng)方體的體積等于圓柱體的體積,長(zhǎng)方體的底面積等于圓柱的底面積,長(zhǎng)方體的高相當(dāng)于圓柱體的高。因?yàn)殚L(zhǎng)方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。
師:如果圓柱的體積用V來表示,底面積用S表示,高用h來表示。如何表示圓柱的體積計(jì)算公式呢?(板書:V=Sh)
〔設(shè)計(jì)意圖:學(xué)生合作交流,自主探索、經(jīng)歷圓柱體體積計(jì)算公式的推導(dǎo)過程,理解和掌握了計(jì)算方法,加深了印象,從而體驗(yàn)探索成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。學(xué)會(huì)學(xué)習(xí)方法,獲得學(xué)習(xí)經(jīng)驗(yàn)。達(dá)成目標(biāo)1、3、4、5.〕
5、實(shí)際應(yīng)用
。1)、師:給你圓柱的底面積和高,你會(huì)求圓柱的體積嗎?
例1、一根圓柱形木料,底面積75平方厘米,高是90厘米,它的體積是多少? 學(xué)生獨(dú)立完成,集體反饋矯正,說思路。
(2)、完成評(píng)價(jià)樣題
〔設(shè)計(jì)意圖:通過嘗試練習(xí)加深對(duì)圓柱的體積公式的理解,體會(huì)計(jì)算公式在實(shí)際生活中的應(yīng)用,發(fā)展學(xué)生的實(shí)踐能力。達(dá)成目標(biāo)2、4. 〕
三、鞏固練習(xí),拓展提高
1、應(yīng)用公式進(jìn)行口算:
2、
3、
。墼O(shè)計(jì)意圖:第一層次是已知底面積和高求圓柱體積的口算題,面向全體學(xué)生;第二個(gè)層次是已知底面半徑和高、底面直徑和高、底面周長(zhǎng)和高,求體積的三種練習(xí)題,面向全體學(xué)生;第三個(gè)層次是求放入水中物體的體積就是求上升的圓柱形水的體積,面向中上層學(xué)生。這樣設(shè)計(jì)的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。在做練習(xí)過程中,一、二層次的練習(xí)板演盡量讓學(xué)困生和中等生去做,給他們展示自己的機(jī)會(huì)。并及時(shí)了解學(xué)生信息并根據(jù)學(xué)生反饋及時(shí)調(diào)整教學(xué)進(jìn)程,同時(shí)對(duì)學(xué)生存在的問題及時(shí)指導(dǎo)。達(dá)成目標(biāo)2、4. ]
四、全課總結(jié),共談收獲
通過今天的學(xué)習(xí),你有什么收獲?
。墼O(shè)計(jì)意圖:師生共同小結(jié),學(xué)會(huì)了什么?怎樣求圓柱的體積?這樣起到強(qiáng)化重點(diǎn)的目的。]
五、課外創(chuàng)新,拓展延伸
長(zhǎng)方體可以這樣放(上、下面朝下),還可以這樣放(左、右面朝下),還可哪樣放(前、后面朝下)。 上、下面朝下時(shí)求出圓柱的體積=底面積×高,圓柱的體積還有沒
《圓柱的體積》教學(xué)設(shè)計(jì)12
教學(xué)目標(biāo):
1、通過教學(xué),使學(xué)生經(jīng)歷觀察、猜想、操作、驗(yàn)證、交流和歸納等數(shù)學(xué)活動(dòng)過程,探索并掌握?qǐng)A柱的體積公式,初步學(xué)會(huì)應(yīng)用公式計(jì)算圓柱的體積,并解決相關(guān)的簡(jiǎn)單實(shí)際問題;
2、使學(xué)生在活動(dòng)中進(jìn)一步體會(huì)“轉(zhuǎn)化”方法的價(jià)值,培養(yǎng)應(yīng)用已有知識(shí)解決新問題的能力。
3、培養(yǎng)學(xué)生初步的空間概念、動(dòng)手能力、操作能力和邏輯思維推理能力。
教學(xué)重點(diǎn):
掌握和運(yùn)用圓柱體積計(jì)算公式進(jìn)行正確計(jì)算。
教學(xué)難點(diǎn):
理解圓柱體積計(jì)算公式的推導(dǎo)過程,體會(huì)“轉(zhuǎn)化”方法的價(jià)值。
教學(xué)準(zhǔn)備:
1、用于演示把圓柱體積轉(zhuǎn)化成長(zhǎng)方體體積的教具。
2、多媒體課件。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入、揭示課題
談話:前幾節(jié)課我們已經(jīng)認(rèn)識(shí)了圓柱體,學(xué)會(huì)了計(jì)算圓柱的側(cè)面積、底面積和表面積,今天這節(jié)課我們繼續(xù)來研究圓柱的體積。同學(xué)們回憶一下,什么叫體積?(指名回答,生:物體所占空間的大小叫做體積。)我們學(xué)會(huì)計(jì)算哪些立體圖形的體積呢?(指名學(xué)生回答,教師演示課件。根據(jù)學(xué)生的回答,板書:長(zhǎng)方體的體積=底面積×高)
1、呈現(xiàn)長(zhǎng)方體、正方體和圓柱的直觀圖。
2、揭題:老師為大家準(zhǔn)備了長(zhǎng)方體、正方體、圓柱。其中我們學(xué)過了長(zhǎng)方體和正方體的體積計(jì)算方法。大家想不想知道圓柱體的體積計(jì)算方法?今天我們一起來探索圓柱體積的計(jì)算方法。(板書課題:圓柱的體積)
3、教師:在研究這個(gè)問題之前,我們先來復(fù)習(xí)一下,圓的面積是怎樣計(jì)算的呢?圓的.面積計(jì)算公式是怎樣推導(dǎo)出來的?(學(xué)生:把一個(gè)圓,平均分成若干個(gè)扇形,拼成一個(gè)近似長(zhǎng)方形,長(zhǎng)方形的長(zhǎng)相當(dāng)于圓周長(zhǎng)的一半,寬相當(dāng)于圓的半徑。)根據(jù)學(xué)生的敘述,教師課件演示。
二、自主探究,精講點(diǎn)撥
1、教師:那么今天我們要研究的圓柱的體積,能不能也像剛才圓的面積公式推導(dǎo)過程一樣,轉(zhuǎn)化成我們學(xué)過的立體圖形,推導(dǎo)出計(jì)算圓柱體積的公式呢?
2、學(xué)生小組討論、交流。
教師:同學(xué)們自己先在小組里討論一下
。1)你準(zhǔn)備把圓柱體轉(zhuǎn)化成什么立體圖形?
。2)你是怎樣轉(zhuǎn)化成這個(gè)立體圖形的?
(3)轉(zhuǎn)化以后的立體圖形和圓柱體之間有什么關(guān)系?
3、推導(dǎo)圓柱體積公式。
學(xué)生交流,教師動(dòng)畫演示。
。1)把圓柱體轉(zhuǎn)化成長(zhǎng)方體。
(2)怎樣轉(zhuǎn)化成長(zhǎng)方體呢?(指名敘述:把圓柱體底面分成平均分成若干個(gè)扇形(例如分成16份),然后把圓柱切開,拼成一個(gè)近似長(zhǎng)方體。)你會(huì)操作嗎?(學(xué)生演示教具)
。3)教師說明:底面扇形平均分的份數(shù)越多,拼成的立體圖形就越接近長(zhǎng)方體。
(4)教師:這個(gè)長(zhǎng)方體與圓柱體比較一下,什么變了?什么沒變?(生:形狀變了,體積大小沒變。)
(5)推導(dǎo)圓柱體積公式。
討論:切拼成的長(zhǎng)方體與圓柱體有什么關(guān)系?(學(xué)生回答:切拼成的長(zhǎng)方體的體積相當(dāng)于圓柱的體積,長(zhǎng)方體的底面積相當(dāng)于圓柱體的底面積,長(zhǎng)方體的高相當(dāng)于圓柱體的高。教師根據(jù)學(xué)生回答演示課件。)
教師:圓柱的體積怎樣計(jì)算?用字母公式,怎樣表示?板書:
圓柱的體積 = 底面積×高
V = S h
三、運(yùn)用公示,解決問題
教師:根據(jù)圓柱體積的計(jì)算公式,如果要求圓柱的體積,你必須知道哪些條件就可以求?
、僦缊A柱的底面積和高,可以求圓柱的體積。
練習(xí)七的第1題:填表。
、谥缊A柱的底面半徑和高,可以求圓柱的體積。
試一試。
、壑缊A柱的底面積直徑和高,可以求圓柱的體積。
練一練的第1題:計(jì)算下面各圓柱的體積。
、苤缊A柱的底面周長(zhǎng)和高,可以求圓柱的體積。
一根圓柱形零件,底面周長(zhǎng)是12.56厘米,長(zhǎng)是10厘米,它的體積是多少?
四、遷移應(yīng)用,質(zhì)疑反饋。
1、判斷正誤,對(duì)的畫“√”,錯(cuò)誤的畫“×”。
2、計(jì)算下面各圓柱的體積。
3、智慧屋:已知一個(gè)圓柱的側(cè)面積為37.68平方厘米,底面半徑為3厘米,求這個(gè)圓柱的體積。
五、全課小結(jié)。
這節(jié)課我們一起學(xué)習(xí)了運(yùn)用轉(zhuǎn)化的方法推導(dǎo)出圓柱體積的計(jì)算公式,并且能夠運(yùn)用圓柱體積的計(jì)算公式解決一些實(shí)際問題。在今后的學(xué)習(xí)中,特別提醒大家一定正確計(jì)算出圓柱的體積,并且能靈活運(yùn)用圓柱的體積計(jì)算公式。
六、作業(yè)布置:
完成作業(yè)紙上的習(xí)題
教學(xué)反思
本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育蘇教版六年級(jí)下冊(cè)的《圓柱的體積》,以前教學(xué)此內(nèi)容時(shí),直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學(xué)生套公式練習(xí);我教此內(nèi)容時(shí),不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。對(duì)此,我作如下反思:
一、學(xué)生學(xué)到了有價(jià)值的知識(shí)。
學(xué)生通過實(shí)踐、探索、發(fā)現(xiàn),得到的知識(shí)是“活”的,這樣的知識(shí)對(duì)學(xué)生自身智力和創(chuàng)造力發(fā)展會(huì)起到積極的推動(dòng)作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識(shí)具有個(gè)人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實(shí)踐增強(qiáng)探究和創(chuàng)新意識(shí),學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動(dòng)手實(shí)踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識(shí),把學(xué)生當(dāng)成知識(shí)的“容器”。學(xué)生的學(xué)習(xí)只是被動(dòng)地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。
而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。
不足之處是:
1、
2、 留給學(xué)生自由討論、實(shí)踐和思考的時(shí)間較少。 教學(xué)時(shí)教師語言過于平緩,沒有調(diào)動(dòng)起學(xué)生的積極性。
《圓柱的體積》教學(xué)設(shè)計(jì)13
學(xué) 科:數(shù)學(xué)
教學(xué)內(nèi)容:最新人教版六年級(jí)數(shù)學(xué)下冊(cè)第三章《圓柱的體積》
教材分析:
〈〈圓柱的體積〉〉是數(shù)學(xué)課程標(biāo)準(zhǔn)中“空間與圖形”領(lǐng)域內(nèi)容的一部分!础磮A柱的體積〉〉一課,是在學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo)和長(zhǎng)方體、正方體的體積公式的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,而這節(jié)課的順利學(xué)習(xí)將為以后圓錐體積的學(xué)習(xí)鋪平道路。學(xué)生已經(jīng)有了把圓形拼成近似的長(zhǎng)方形的經(jīng)驗(yàn),聯(lián)想到把圓柱切拼成長(zhǎng)方體并不難,但是學(xué)生還是喜歡用自己的方法解決問題,所以我給學(xué)生創(chuàng)設(shè)盡情展示自我的空間,通過自主的學(xué)習(xí)、合作探究、動(dòng)手操作,讓學(xué)生感知立體圖形間的一些關(guān)系,從而解決生活當(dāng)中常見的問題。由此、我制定以下三維教學(xué)目標(biāo):
教學(xué)目標(biāo)
知識(shí)目標(biāo):
。1)通過學(xué)生體驗(yàn)圓柱體體積公式的推導(dǎo)過程,掌握?qǐng)A柱的體積公式并能應(yīng)用公式解決實(shí)際問題。
。2)通過操作讓學(xué)生知道知識(shí)間的相互轉(zhuǎn)化。
能力目標(biāo):
倡導(dǎo)自主學(xué)習(xí)、小組合作、動(dòng)手操作的學(xué)習(xí)方式,培養(yǎng)學(xué)生動(dòng)手操作的能力,合作交流的意識(shí)。從而建立空間觀念培養(yǎng)學(xué)生的邏輯推理能力。
情感目標(biāo):
讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系,體驗(yàn)探索數(shù)學(xué)奧秘的樂趣,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的.積極情感。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):推導(dǎo)圓柱體積計(jì)算公式的過程。
教具、學(xué)具準(zhǔn)備:
采用的教具為PPT課件和學(xué)具。(圓柱體切割組合學(xué)具,各小組自備所需演示的用具)。 教學(xué)過程:
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?
。2)你能用以前學(xué)過的方法計(jì)算出這些水的體積嗎?
。3)討論后匯報(bào):把水倒入長(zhǎng)方體容器中,量出數(shù)據(jù)后再計(jì)算。
。4)說一說長(zhǎng)方體體積的計(jì)算公式。
2、出示橡皮泥捏成的圓柱體。
出示問題:大家想一想用什么辦法來求出這個(gè)圓柱體橡皮泥的體積呢?
。ㄓ械膶W(xué)生會(huì)想到:老師將它捏成長(zhǎng)方體就可以了;還有的學(xué)生會(huì)想到捏成正方體也可以的!)
3、創(chuàng)設(shè)問題情景。
。ㄕn件顯示)如果要求壓路機(jī)圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?
剛才的方法不是一種普遍的方法,那么在求圓柱體積的時(shí)候,有沒有像求長(zhǎng)方體或正方體體積那樣的計(jì)算公式呢?今天,我們就來一起研究圓柱體積的計(jì)算方法。(出示課題:圓柱的體積)
。ㄔO(shè)計(jì)意圖:?jiǎn)栴}是思維的動(dòng)力。通過創(chuàng)設(shè)問題情景,可以引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,積極思考,去探索和解決實(shí)際問題,并能制造認(rèn)知沖突,形成任務(wù)驅(qū)動(dòng)的探究氛圍。)
二、新課教學(xué)
設(shè)疑揭題:我們能把一個(gè)圓采用化曲為直、化圓為方的方法推導(dǎo)出了圓面積的計(jì)算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個(gè)學(xué)過的立體圖形來求它的體積呢?今天我們一起來探討這個(gè)問題。板書課題:圓柱的體積。
(一)學(xué)生動(dòng)手操作探究
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學(xué)過的哪些幾何圖形有聯(lián)系? 啟發(fā)學(xué)生回憶得出:圓柱的上下兩個(gè)底面是圓形;側(cè)面展開是長(zhǎng)方形:所以……
。2)請(qǐng)大家回憶一下:在學(xué)習(xí)圓的面積時(shí),我們是怎樣將圓轉(zhuǎn)化成已學(xué)過的圖形,來推導(dǎo)出圓面積公式的。
。ㄍㄟ^想象,進(jìn)一步發(fā)展學(xué)生的空間觀念,由“形”到“體”;同時(shí)使學(xué)生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導(dǎo)過程的再現(xiàn),為實(shí)現(xiàn)經(jīng)驗(yàn)和方法的遷移作鋪墊)
2、小組合作,探究推導(dǎo)圓柱的體積計(jì)算公式。
。1)啟發(fā)猜想:可見,大部分圖形公式的推導(dǎo)都可以把所學(xué)的轉(zhuǎn)化為學(xué)過的。那么你覺得圓柱的體積和什么有關(guān)系?你能猜一猜圓柱的體積可以怎樣計(jì)算呢? (這是學(xué)生會(huì)有圓的面積想到把圓柱轉(zhuǎn)化為長(zhǎng)方體)
老師激勵(lì)同學(xué)們:大家同意他的猜想嗎?但我們還是要小心地驗(yàn)證猜想的科學(xué)性。都說實(shí)踐出真知,接下來同學(xué)們以小組為單位拿出學(xué)具,動(dòng)手嘗試著進(jìn)行轉(zhuǎn)化,并說一說轉(zhuǎn)化的過程。
。2)學(xué)生以小組為單位操作體驗(yàn)。
老師引導(dǎo)學(xué)生探究:
、 說說你們小組是如何轉(zhuǎn)化的。這是一個(gè)標(biāo)準(zhǔn)的長(zhǎng)方體嗎?為什么?
② 如果分割得份數(shù)越多,你有什么發(fā)現(xiàn)?(電腦演示轉(zhuǎn)化過程)
、 這是同學(xué)們剛才的轉(zhuǎn)化過程。那書上是怎么說的?下面就請(qǐng)同學(xué)們打開書,自由讀,用直線標(biāo)記,找出關(guān)鍵句。全班齊讀。
。ǎ常┈F(xiàn)在再請(qǐng)一位同學(xué)到前面來演示轉(zhuǎn)化過程。其他同學(xué)邊觀察邊思考: ①切割后拼成了一個(gè)近似于什么的形體?
、趫A柱的體積與拼成后的長(zhǎng)方體的體積有什么關(guān)系?
③這個(gè)長(zhǎng)方體的底面積等于圓柱的什么?
、荛L(zhǎng)方體的高與圓柱體的高有什么關(guān)系?
(二)教師課件演示
1、課件演示拼、組的過程,同時(shí)演示一組動(dòng)畫(將圓柱底面等分成16份、32份、64份……),讓學(xué)生明確:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。依次解決問題。 ①把圓柱拼成長(zhǎng)方體后,形狀變了,體積不變。
。ò鍟洪L(zhǎng)方體的體積=圓柱的體積)
、谄闯傻拈L(zhǎng)方體的底面積等于圓柱的底面積,高就是圓柱的高。
(配合回答,演示課件,閃爍相應(yīng)的部位,并板書相應(yīng)的內(nèi)容。)
、蹐A柱的體積=底面積×高 字母公式是V=Sh(板書公式)討論并得出結(jié)果。你能根據(jù)這個(gè)實(shí)驗(yàn)得出圓柱的體積計(jì)算公式嗎?為什么?
《圓柱的體積》教學(xué)設(shè)計(jì)14
教學(xué)內(nèi)容:
人教版六年級(jí)下冊(cè)第19~20頁圓柱體積公式的推導(dǎo)和練習(xí)三的第1~3題。
教學(xué)目標(biāo):
1、通過觀察、操作、討論等教學(xué)活動(dòng)過程,理解圓柱體積計(jì)算公式的推導(dǎo)過程,并會(huì)正確地計(jì)算圓柱的體積。
2、在圖形的變換中,培養(yǎng)遷移能力,邏輯思維能力,并進(jìn)一步發(fā)展其空間觀念。
3、探索和解決問題,體驗(yàn)轉(zhuǎn)化及極限的思想方法。
4、學(xué)會(huì)由未知向已知轉(zhuǎn)化的學(xué)習(xí)方法。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計(jì)算公式。
教學(xué)難點(diǎn):掌握?qǐng)A柱體積公式的推導(dǎo)過程。
教學(xué)方法:嘗試指導(dǎo)法
學(xué)法指導(dǎo):猜想→討論→操作→概括→嘗試→辨析→總結(jié)
教學(xué)用具:圓柱的體積公式演示課件。
學(xué)習(xí)用具:準(zhǔn)備推導(dǎo)圓柱體積計(jì)算公式所用的學(xué)具。
教學(xué)過程:
一、激疑引入
同學(xué)們,你們看,茶葉罐是什么形狀的?如何求它的體積?你有辦法嗎?……今天,就讓我們一起來研究圓柱體積的計(jì)算方法(板書課題:圓柱的體積)。
二、探究新知
1、猜想
現(xiàn)在該怎樣來計(jì)算圓柱的體積呢?不妨大膽猜想一下好嗎?
2、表揚(yáng)鼓勵(lì),實(shí)踐遷移
。1)有同學(xué)能把圓柱轉(zhuǎn)化成我們已學(xué)過的立體圖形,來計(jì)算它的體積,真是既聰明又能干!
讓學(xué)生互相討論,思考應(yīng)如何轉(zhuǎn)化,然后組織全班匯報(bào)。(把圓柱的底面分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉(zhuǎn)化成近似的長(zhǎng)方體了。)
。2)操作:學(xué)生操作學(xué)具,切割拼合。
(3)感知:將圓柱體模具(已切好)當(dāng)場(chǎng)演示。
、僮屢晃粚W(xué)生把切割好的一半拿上又叉開;
②另一位學(xué)生將切割好的另一半拼合上去;
、塾^察得到一個(gè)什么形體?同時(shí)你發(fā)現(xiàn)了什么?逐步引導(dǎo)學(xué)生觀察、對(duì)比、分析。
。4)課件演示,讓學(xué)生明白:分成的扇形越多,拼成的立體圖形就越接近于長(zhǎng)方體。
(5)討論:圓柱與所拼成的近似長(zhǎng)方體之間的'有什么聯(lián)系?
。6)匯報(bào):你發(fā)現(xiàn)了什么?【圓柱→近似長(zhǎng)方體:①體積相等;②底面積相等;③高相等;④表面積不相等!
(7)概括總結(jié)
、僮寣W(xué)生試著總結(jié)公式;
、诶蠋熢趯W(xué)生總結(jié)的基礎(chǔ)上用課件出示
長(zhǎng)方體的體積=底面積×高
↓ ↓ ↓
圓柱體的體積=底面積×高
用字母表示:v=sh
3、運(yùn)用新知,嘗試解答
[做一做]一根圓柱形木料,底面積為75cm2,長(zhǎng)90cm。它的體積是多少?
。1)嘗試:讓學(xué)生理解題意,自己嘗試解答。
。2)展示:根據(jù)v=sh可得:75×90=6750(cm3)
。3)講評(píng)并強(qiáng)調(diào):計(jì)算體積時(shí)結(jié)果應(yīng)用體積單位。
。4)拓展:如果已知圓柱底面的半徑r和高h(yuǎn),該怎么來計(jì)算圓柱的體積呢?如果已知的是底面的直徑d和高h(yuǎn)呢?
讓學(xué)生獨(dú)立思考,寫出計(jì)算公式,再相互交流。
得到:v=πr2h
[完成教材第20頁例6]一個(gè)圓柱形水杯,從里面量底面直徑是8厘米,高是10厘米。已知一袋純牛奶有498mL。問這個(gè)杯子能不能裝下這袋牛奶?
1、教師引導(dǎo)學(xué)生:要回答這個(gè)問題,先要計(jì)算出杯子的容積。
2、學(xué)生獨(dú)立計(jì)算杯子的容積,然后與牛奶的容積作比較,就完成了任務(wù)。
三、鞏固練習(xí)
1、完成下表。
底面積/ m2 | 高/m | 圓柱的體積/ m3 |
7 | 3 | |
5.6 | 4 |
2、一個(gè)壓路機(jī)的前輪是圓柱形,輪寬2.5米,半徑1米。它的體積是多少立方米?
四、全課小結(jié)
同學(xué)們,今天我們學(xué)習(xí)了什么知識(shí)?你還有什么不懂的問題?
五、布置作業(yè)(練習(xí)三第2、3題)
板書設(shè)計(jì)
圓柱的體積
圓柱轉(zhuǎn)化近似長(zhǎng)方體
長(zhǎng)方體的體積=底面積×高
↓ ↓ ↓
圓柱的體積=底面積×高
V柱=sh
V柱=πr2h
《圓柱的體積》教學(xué)設(shè)計(jì)15
一、教學(xué)目標(biāo)
(一)知識(shí)與技能
用已學(xué)的圓柱體積知識(shí)解決生活中的實(shí)際問題,并滲透轉(zhuǎn)化思想。
(二)過程與方法
經(jīng)歷探究不規(guī)則物體體積的轉(zhuǎn)化、測(cè)量和計(jì)算過程,讓學(xué)生在動(dòng)手操作中初步建立“轉(zhuǎn)化”的數(shù)學(xué)思想,體驗(yàn)“等積變形”的轉(zhuǎn)化過程。
(三)情感態(tài)度和價(jià)值觀
通過實(shí)踐,讓學(xué)生在合作中建立協(xié)作精神,并增強(qiáng)學(xué)生“用數(shù)學(xué)”的意識(shí)。
二、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):利用所學(xué)知識(shí)合理靈活地分析、解決不規(guī)則物體的體積的計(jì)算方法。
教學(xué)難點(diǎn):轉(zhuǎn)化前后的溝通。
三、教學(xué)準(zhǔn)備
每組一個(gè)礦泉水瓶(課前統(tǒng)一搜集農(nóng)夫山泉礦泉水瓶,裝有適量清水,水高度分別為6、7、8、9厘米),直尺。
四、教學(xué)過程
(一)復(fù)習(xí)舊知,做好鋪墊
1.板書:圓柱的體積。
問:圓柱的體積怎么計(jì)算?體積和容積有什么區(qū)別?
2.揭題:這節(jié)課,我們要根據(jù)這些體積和容積的知識(shí)來解決生活中的實(shí)際問題。(完整板書:用圓柱的體積解決問題。)
【設(shè)計(jì)意圖】通過復(fù)習(xí)圓柱的體積計(jì)算方法以及體積和容積之間的聯(lián)系和區(qū)別,為學(xué)習(xí)新知做好知識(shí)上的準(zhǔn)備。
(二)探索實(shí)踐,體驗(yàn)轉(zhuǎn)化過程
1.創(chuàng)設(shè)情境,提出問題。
每個(gè)小組桌子上有一個(gè)沒有裝滿水的礦泉水瓶。
教師:原本這是一瓶裝滿水的礦泉水,已經(jīng)喝了一部分,你能根據(jù)它來提一個(gè)數(shù)學(xué)問題嗎?(隨機(jī)板書)
預(yù)設(shè)1:瓶子還有多少水?(剩下多少水?)
預(yù)設(shè)2:喝了多少水?(也就是瓶子的空氣部分。)
預(yù)設(shè)3:這個(gè)瓶子一共能裝多少水?(也就是這個(gè)瓶子的容積是多少?)
2.你覺得你能輕松解決什么問題?
(1)預(yù)設(shè)1:瓶子有多少水?(怎么解決?)
學(xué)生:瓶子里剩下的水呈圓柱狀,只要量出這個(gè)圓柱的底面直徑和高就能算出它的體積。
教師:需要用到什么工具?(直尺)你想利用直尺得到哪些數(shù)據(jù)?(底面直徑、水的高度)
小結(jié):知道了底面直徑和水的高度,要解決這個(gè)問題的確輕而易舉。請(qǐng)你準(zhǔn)備好直尺,或許等會(huì)兒有用哦!
(2)預(yù)設(shè)2:喝了多少水?
學(xué)生:喝掉部分的形狀是不規(guī)則,沒有辦法計(jì)算。
教師:當(dāng)物體形狀不規(guī)則時(shí),我們想求出它的體積可以怎么辦?
教師相機(jī)引導(dǎo):能否將空氣部分變成一個(gè)規(guī)則的立體圖形呢?
學(xué)生能說出方法更好,不能說出則引導(dǎo):我們不妨把瓶子倒過來看看,你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生發(fā)現(xiàn):在瓶子倒置前后,水的體積不變,空氣的體積不變,因此,喝了多少水=倒置后空氣部分的體積,倒置后空氣部分是一個(gè)圓柱,要求出它的體積需要哪些數(shù)據(jù)?(倒置后空氣的高度)
小結(jié):這個(gè)方法不錯(cuò),我們利用水的流動(dòng)性成功地將不規(guī)則的空氣部分轉(zhuǎn)化成了一個(gè)圓柱體,得到所需數(shù)據(jù)后能求出它的體積。這樣一來,第3個(gè)問題還難得到你嗎?
。3)怎么求這個(gè)礦泉水瓶的容積?引導(dǎo)學(xué)生得出:倒置前水的體積+倒置后空氣的體積=瓶子容積。
【設(shè)計(jì)意圖】課本中的例題呈現(xiàn)如下,
例題是直接呈現(xiàn)轉(zhuǎn)化方法的,我是想先屏蔽相關(guān)數(shù)據(jù)信息和方法,通過激發(fā)學(xué)生解決問題的內(nèi)在需求,根據(jù)自己的生活學(xué)習(xí)經(jīng)驗(yàn)來想辦法解決,才有了對(duì)數(shù)學(xué)情境的改編,以期通過轉(zhuǎn)化、觀察、對(duì)比,讓學(xué)生發(fā)現(xiàn)倒置前后兩部分立體圖形之間的相同點(diǎn),溝通兩部分體積之間的內(nèi)在聯(lián)系,順利地把新知轉(zhuǎn)化為舊知,分散了難點(diǎn),從而找到解決問題的方法。
3.小組合作,測(cè)量計(jì)算。
。ǖV泉水瓶?jī)?nèi)直徑為6cm)
教師:方法找到了,接下來能否正確求出瓶子的容積就看你們的了!
。1)課件出示:
一個(gè)內(nèi)直徑是( )的瓶子里,水的高度是( ),把瓶蓋擰緊倒置放平,無水部分是圓柱形,高度是( )。這個(gè)瓶子的容積是多少?(測(cè)量時(shí)取整厘米數(shù))
(2)四人小組合作:
A.組長(zhǎng)安排好分工:
要量出所需數(shù)據(jù),其他組員要監(jiān)督好測(cè)量方法與結(jié)果是否正確,要按要求把題目填完整。
B.組內(nèi)互相說一說:倒置前后哪兩部分的體積不變?
礦泉水瓶的容積=( )+( )。
C.做好以上準(zhǔn)備工作后,利用所得數(shù)據(jù)獨(dú)立計(jì)算,再組內(nèi)校對(duì)結(jié)果是否正確。
【設(shè)計(jì)意圖】這一環(huán)節(jié)讓學(xué)生大膽動(dòng)手操作,在實(shí)踐中不斷發(fā)現(xiàn)解決問題,在同伴的交流中拓展自己的思維,讓學(xué)生在合作中建立協(xié)作精神。
4.交流反饋。
教師巡查,選擇礦泉水瓶中原有水高度分別6、7、8、9厘米的同學(xué)板演。
瓶中水高度為6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13
=3.14×9×(6+13)
≈537(毫升)。
瓶中水高度為7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12
=3.14×9×(7+12)
≈537(毫升)。
瓶中水高度為8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11
=3.14×9×(8+11)
≈537(毫升)。
瓶中水高度為9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10
=3.14×9×(9+10)
≈537(毫升)。
教師:出示某品牌礦泉水瓶的標(biāo)簽,上面寫著凈含量為550毫升,基本符合。
5.解答正確嗎?
教師引導(dǎo)學(xué)生回顧反思:剛才我們是怎樣解決問題的?
小結(jié):根據(jù)具體情況選擇合適的轉(zhuǎn)化方法,像這樣不規(guī)則立體圖形的體積可以轉(zhuǎn)化為規(guī)則的立體圖形來計(jì)算。
【設(shè)計(jì)意圖】通過回顧解決問題的過程,幫助學(xué)生把本環(huán)節(jié)的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)進(jìn)行總結(jié),引導(dǎo)學(xué)生在后續(xù)的學(xué)習(xí)中碰到相似的問題也可同樣利用轉(zhuǎn)化的思想來解決。
(三)練習(xí)鞏固,學(xué)以致用
1.?dāng)?shù)學(xué)書P27做一做。
。1)學(xué)生獨(dú)立思考,解決問題。
。2)把自己的想法與同桌說一說。
。3)交流反饋:重點(diǎn)交流如何轉(zhuǎn)化,倒置后哪兩部分體積不變?
求小明喝了多少水實(shí)際上是求礦泉水瓶上面無水部分的體積,這部分為不規(guī)則的立體圖形。
將水瓶倒置后不規(guī)則容器轉(zhuǎn)化成了圓柱:該圓柱體積=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
2.輸液100毫升,每分鐘輸2.5毫升,請(qǐng)觀察第12分鐘時(shí)吊瓶圖像中的數(shù)據(jù)。問整個(gè)吊瓶的容積是多少毫升?
。1)請(qǐng)學(xué)生計(jì)算,并反饋訂正。
(2)反饋要點(diǎn):
整個(gè)吊瓶容積=圖像中空氣部分的容積+還剩下液體的體積。
根據(jù)圖象,可以得出在第12分鐘吊瓶有80毫升是空的。
剩下液體的體積=100-2.5×12=70(毫升)。
即整個(gè)吊瓶容積=80+70=150(毫升)。
【設(shè)計(jì)意圖】從生活中常見的吊瓶問題引出,感受數(shù)學(xué)與生活的`密切聯(lián)系,能根據(jù)圖像提取解決問題的有效信息 ,既提升了所學(xué)知識(shí),又關(guān)注了學(xué)生的思考,培養(yǎng)學(xué)生的分析、解決問題能力。
3.如下圖,一個(gè)底面周長(zhǎng)為9.42厘米的圓柱體,從中間斜著截去一段后,它的體積是多少?
。1)思考:這是一個(gè)不規(guī)則的立體圖形,要求它的體積,它不能像瓶子里的水一樣可以流動(dòng)變形轉(zhuǎn)化,怎么辦?
。2)討論方法:
A.重疊:假設(shè)把兩個(gè)大小一樣的斜截體拼成一個(gè)底面周長(zhǎng)為9.42厘米,高為(4+6)厘米的圓柱,這個(gè)立體圖形的體積是新圓柱體積的一半。
B.切割:把這個(gè)立體圖形分為兩部分,下面是一個(gè)底面周長(zhǎng)為9.42厘米,高為4厘米的圓柱體,上面是一個(gè)高為(6-4)厘米的圓柱斜截體,且體積是高為(6-4)厘米的圓柱體積的一半。
。3)用自己認(rèn)可的方法計(jì)算,并進(jìn)行反饋。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
。4)反饋小結(jié):可以有不同的轉(zhuǎn)化方法來解決問題。
【設(shè)計(jì)意圖】不滿足于一種方法的轉(zhuǎn)化,展示多種方法,開拓學(xué)生的思維。
(四)全課總結(jié),提升認(rèn)識(shí)
教師:回憶一下,今天這節(jié)課有什么收獲?
教師和學(xué)生共同小結(jié):求不規(guī)則的立體圖形的體積可以將它轉(zhuǎn)化成為規(guī)則的立體圖形,這節(jié)課我們主要是將不規(guī)則的立體圖形轉(zhuǎn)化成為圓柱,用圓柱的體積計(jì)算方法來解決問題。
在解決問題時(shí),主要要弄清楚轉(zhuǎn)化前后兩部分之間的關(guān)系。
【設(shè)計(jì)意圖】通過小結(jié),讓學(xué)生自主地對(duì)回顧本課所學(xué)知識(shí)進(jìn)行梳理總結(jié),通過歸納與提煉,讓學(xué)生明確轉(zhuǎn)化思想在數(shù)學(xué)學(xué)習(xí)中的重要性。
【《圓柱的體積》教學(xué)設(shè)計(jì)】相關(guān)文章:
“圓柱的體積”教學(xué)設(shè)計(jì)06-05
圓柱的體積教學(xué)設(shè)計(jì)(15篇)09-13
《圓柱的體積》教學(xué)設(shè)計(jì)(15篇)06-03
《圓柱的體積》教學(xué)設(shè)計(jì)(精選15篇)06-03
小學(xué)數(shù)學(xué)圓柱的體積教學(xué)設(shè)計(jì)07-14
《圓柱的體積》教學(xué)設(shè)計(jì)15篇11-06
小學(xué)數(shù)學(xué)圓柱的體積教學(xué)設(shè)計(jì)大全【3篇】05-13
體積和體積單位教學(xué)設(shè)計(jì)11-18
圓柱的體積評(píng)課稿11-15