97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

《三角形的內(nèi)角和》教學(xué)設(shè)計

時間:2022-04-21 20:16:23 設(shè)計 我要投稿

《三角形的內(nèi)角和》教學(xué)設(shè)計

  作為一名人民教師,就難以避免地要準(zhǔn)備教學(xué)設(shè)計,教學(xué)設(shè)計一般包括教學(xué)目標(biāo)、教學(xué)重難點(diǎn)、教學(xué)方法、教學(xué)步驟與時間分配等環(huán)節(jié)。如何把教學(xué)設(shè)計做到重點(diǎn)突出呢?以下是小編幫大家整理的《三角形的內(nèi)角和》教學(xué)設(shè)計,僅供參考,歡迎大家閱讀。

《三角形的內(nèi)角和》教學(xué)設(shè)計

《三角形的內(nèi)角和》教學(xué)設(shè)計1

  一、本節(jié)課在新一輪課程改革下的設(shè)計理念:

  數(shù)學(xué)是人與人之間精神層面上進(jìn)行的交往。課堂教學(xué)中的交往主要是教師與學(xué)生、學(xué)生與學(xué)生之間的交往。它需要運(yùn)用“對話式”的學(xué)習(xí)方式,采取多種教學(xué)策略,使學(xué)生在合作、探索、交流中發(fā)展能力。新課程中對學(xué)生的情感、體驗、價值觀,以及獲取知識的渠道都有悖于傳統(tǒng)的教學(xué)模式,這正是教師在新課程中尋找新的教學(xué)方式的著眼點(diǎn)。應(yīng)該說,新的教學(xué)方式將伴隨著教師對新課程的逐漸透視而形成新的路徑。要破除原有教學(xué)活動的框架,建立適應(yīng)師生相互交流的教學(xué)活動體系;滿足學(xué)生的心理需求,實現(xiàn)教者與學(xué)者感情上的融洽和情感上的共鳴;給學(xué)生體驗成功的機(jī)會,把“要我學(xué)”變成“我要學(xué)”。我認(rèn)為教師角色的轉(zhuǎn)變一定會促進(jìn)學(xué)生的發(fā)展、促進(jìn)教育的長足發(fā)展,在未來的教學(xué)過程里,教師要做的是:幫助學(xué)生決定適當(dāng)?shù)膶W(xué)習(xí)目標(biāo),并確認(rèn)和協(xié)調(diào)達(dá)到目標(biāo)的途徑;指導(dǎo)學(xué)生形成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略;創(chuàng)造豐富的教學(xué)情境,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,充分調(diào)動學(xué)生的學(xué)習(xí)積極性;為學(xué)生提供各種便利,為學(xué)生的學(xué)習(xí)服務(wù);建立一個接納的、支持性的、寬容的課堂氣氛;作為學(xué)習(xí)的參與者,與學(xué)生分享自己的感情和想法;和學(xué)生一道尋找真理,能夠承認(rèn)自己的過失和錯誤。教學(xué)情境的營造是教師走進(jìn)新課程中所面臨的挑戰(zhàn),適應(yīng)新一輪基礎(chǔ)教育課程改革的教學(xué)情境不是文本中的約定,也不是現(xiàn)成的拿來就能用的,需要我們在教學(xué)活動的全過程中去探索、研究、發(fā)現(xiàn)、形成。

  二、教材分析與處理:

  三角形的內(nèi)角和定理揭示了組成三角形的三個角的數(shù)量關(guān)系,此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ),三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

  三、學(xué)生分析

  處于這個年齡階段的學(xué)生有能力自己動手,在自己的視野范圍內(nèi)因地制宜地收集、編制、改造適合自身使用,貼近生活實際的數(shù)學(xué)建模問題,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時注意問題的開放性與可擴(kuò)展性。

  四、教學(xué)目標(biāo):

  1.知識目標(biāo):在情境教學(xué)中,通過探索與交流,逐步發(fā)現(xiàn)“三角形內(nèi)角和定理”,使學(xué)生親身經(jīng)歷知識的發(fā)生過程,并能進(jìn)行簡單應(yīng)用。能夠探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,體會方程的思想。通過開放式命題,嘗試從不同角度尋求解決問題的方法。教學(xué)中,通過有效措施讓學(xué)生在對解決問題過程的反思中,獲得解決問題的經(jīng)驗,進(jìn)行富有個性的學(xué)習(xí)。

  2.能力目標(biāo):通過拼圖實踐、問題思考、合作探索、組內(nèi)及組間交流,培養(yǎng)學(xué)生的的邏輯推理、大膽猜想、動手實踐等能力。

  3.德育目標(biāo):通過添置輔助線教學(xué),滲透美的思想和方法教育。

  4.情感、態(tài)度、價值觀:在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生樂于學(xué)數(shù)學(xué),遇到困難不避讓,在數(shù)學(xué)活動中獲得成功的體驗,增強(qiáng)自信心,在合作學(xué)習(xí)中增強(qiáng)集體責(zé)任感。

  五、重難點(diǎn)的確立:

  1.重點(diǎn):三角形的內(nèi)角和定理探究與證明。

  2.難點(diǎn):三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

  六、教法、學(xué)法和教學(xué)手段:

  采用“問題情境-建立模型-解釋、應(yīng)用與拓展”的模式展開教學(xué)。

  采用對話式、嘗試教學(xué)、問題教學(xué)、分層教學(xué)等多種教學(xué)方法,以達(dá)到教學(xué)目的。

  教學(xué)過程設(shè)計:

  一、創(chuàng)設(shè)情境,懸念引入

  一堂新課的引入是老師與學(xué)生交往活動的開始,是學(xué)生學(xué)習(xí)新知識的心理鋪墊,是拉近師生之間的距離,破除疑難心理、乏味心理的關(guān)鍵。一個成功的引入,是讓學(xué)生感覺到他熟知的生活,可使學(xué)生迅速投入到課堂中來,對知識在最短的時間內(nèi)產(chǎn)生極大的興趣和求知欲,接下來教學(xué)活動將成為他們樂此不疲的快事了。

  具體做法:拋出問題:“學(xué)校后勤部折疊長梯(電腦顯示圖形)打開時頂端的角是多少度呢?一名學(xué)生測出了兩個梯腿與地面的`成角后,立即說出了答案,你知道其中的道理嗎?”待學(xué)生思考片刻后,我因勢利導(dǎo),指出學(xué)習(xí)了本節(jié)課你便能夠回答這個問題了。從而引入新課。

  二、探索新知

  1.動手實踐,嘗試發(fā)現(xiàn):要求學(xué)生將事先準(zhǔn)備好的三角形紙板按線剪開,然后用剪下的∠A、∠B與完整的三角形紙板中的∠C拼圖,使三者頂點(diǎn)重合,問能發(fā)現(xiàn)怎樣的現(xiàn)象?有的學(xué)生會發(fā)現(xiàn),三者拼成一個平角。此時讓學(xué)生互相觀察拼圖,驗證結(jié)果。從觀察交流中,互學(xué)方法,達(dá)到生生互動。待交流充分,分小組張貼所拼圖形,教師點(diǎn)評,總結(jié)分類,將所拼圖形分為∠A、∠B分別在∠C同側(cè)和兩側(cè)兩種情況。對有合作精神的小組給與表揚(yáng)。

  (將拼圖展示在黑板上)

  2.嘗試猜想:教師提問,從活動中你有怎樣的發(fā)現(xiàn)?采取組內(nèi)交流的方式,產(chǎn)生思維碰撞。此時我走到學(xué)生中去,對有困難的小組給與適當(dāng)?shù)囊龑?dǎo)。之后由學(xué)生匯報組內(nèi)的發(fā)現(xiàn)。即三角形三個內(nèi)角的和等于180度。

  3.證明猜想:先幫助學(xué)生回憶命題證明的基本步驟,然后讓學(xué)生獨(dú)立完成畫圖、寫出已知、求證的步驟,其他同學(xué)補(bǔ)充完善。下面讓學(xué)生對照剛才的動手實踐,分小組探求證明方法。此環(huán)節(jié)應(yīng)留給學(xué)生充分的思考、討論、發(fā)現(xiàn)、體驗的時間,讓學(xué)生在交流中互取所長,合作探索,找到證明的切入點(diǎn),體驗成功。對有困難的學(xué)生要多加關(guān)注和指導(dǎo),不放棄任何一個學(xué)生,借此增進(jìn)教師與學(xué)有困難學(xué)生之間的關(guān)系,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。合作探究后,匯報證明方法,注意規(guī)范證明格式。此處自然的引入輔助線的概念。但要說明,添加輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達(dá)到證明的目的。

  4.學(xué)以致用,反饋練習(xí)

  (1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度數(shù)?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  ∴∠B+∠C=100°在△ABC中,

  (2)已知:∠A=80°,∠B=52°,則∠C=?

  解:∵∠A+∠B+∠C=180°(三角形內(nèi)角和定理)

  又∵∠A=80°∠B=52°(已知)

  ∴∠C=48°

  (3)在△ABC中,已知∠A=80°,∠B-∠C=40°,則∠C=?

  (4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度數(shù)?

  (5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度數(shù)?

  解:設(shè)∠A=x°,則∠B=3x°,∠C=5x°

  由三角形內(nèi)角和定理得,x+3x+5x=180

  解得,x=20

  ∴∠A=20°∠B=60°∠C=100°

  (6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度數(shù)?(2)若BD是AC邊上的高,∠DBC的度數(shù)?

  第(6)題是書中例題的改用,此題由輔助線輔助課件打出,給學(xué)生以圖形由簡單到繁的直觀演示。

  通過這組練習(xí)滲透把圖形簡單化的思想,繼續(xù)滲透統(tǒng)一思想,用代數(shù)方法解決幾何問題。

  5.鞏固提高,以生為本

  (1)如圖:B、C、D在一條直線上,∠ACD=105°,且∠A=∠ACB,則∠B=——度。

  (2)如圖AD是△ABC的角平分線,且∠B=70°,∠C=25°,則∠ADB=——度,∠ADC=——度。

  本組練習(xí)是三角形內(nèi)角和定理與平角定義及角平分線等知識的綜合應(yīng)用.能較好的培養(yǎng)學(xué)生的分析問題、解決問題的能力,有助于獲得一些經(jīng)驗。

  6.思維拓展,開放發(fā)散

  如圖,已知△PAD中,∠APD=120°,B、C為AD上的點(diǎn),△PBC為等邊三角形。試盡可能多地找出各幾何量之間的相互關(guān)系。

  本題旨在激發(fā)學(xué)生獨(dú)立思考和創(chuàng)新意識,培養(yǎng)創(chuàng)新精神和實踐能力,發(fā)展個性思維。

  三、歸納總結(jié),同化順應(yīng)

  1.學(xué)生談體會

  2.教師總結(jié),出示本節(jié)知識要點(diǎn)

  3.教師點(diǎn)評,對學(xué)生在課堂上的積極合作,大膽思考給與肯定,提出希望。

  四、作業(yè):

  1。必做題:習(xí)題3.1第10、11、12題

  2.選做題:習(xí)題3.1第13、14題

  五、板書設(shè)計

  三角形內(nèi)角和

  學(xué)生拼圖展示已知:求證:

  證明:開放題:

《三角形的內(nèi)角和》教學(xué)設(shè)計2

  一、教材分析

  “三角形內(nèi)角和”的度數(shù)推理是三角形中的一個重要環(huán)節(jié),也是“空間與圖形”領(lǐng)域中的重要內(nèi)容之一,為學(xué)生進(jìn)一步理解三角形三個角、三條邊之間的關(guān)系打下基礎(chǔ)。本節(jié)課首先讓學(xué)生對三角形的特點(diǎn)進(jìn)行復(fù)習(xí),隨后教材中創(chuàng)設(shè)了一個有趣的動態(tài)情境,導(dǎo)入了新課,激發(fā)學(xué)生的興趣,明確“內(nèi)角和”的含義,然后引導(dǎo)學(xué)生探索三角形內(nèi)角和等于多少度,可以采用不同的方法驗證,教學(xué)中安排了3個活動,通過這3個活動體驗“三角形內(nèi)角和”的性質(zhì)和性質(zhì)的探索過程。

  二、學(xué)情分析

  有的學(xué)生可能從各種渠道已經(jīng)對“三角形內(nèi)角和是180°”有所了解,所以本課的重點(diǎn)是通過數(shù)學(xué)活動體驗,理解為什么三角形的內(nèi)角和是180°,使學(xué)生對這個知識的掌握更深刻。經(jīng)過不斷的課改實驗,孩子們已經(jīng)有了一定的自主探究、合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學(xué)產(chǎn)生了濃厚的興趣。

  1.知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。

  2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進(jìn)行簡單的計算機(jī)操作。

  三、教學(xué)方法

  滲透猜想——驗證——結(jié)論——應(yīng)用——拓展

  教學(xué)目標(biāo):

  1、通過直觀操作的方法,探索并發(fā)現(xiàn)三角形三個內(nèi)角和等于180度,在實踐活動中,體驗探索的過程和方法

  2、能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。

  教學(xué)重點(diǎn):

  經(jīng)歷三角形的內(nèi)角和是180°這一知識的形成、發(fā)展和應(yīng)用的全過程,會應(yīng)用三角形的內(nèi)角和解決實際問題;

  教學(xué)難點(diǎn):

  是探索和驗證性質(zhì)的過程。

  四、教具學(xué)具

  三角板、量角器、剪刀、白紙

  五、教學(xué)過程

  (一)、激趣導(dǎo)入,揭示課題

  1、師:同學(xué)們,猜猜它是誰?

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單(打一幾何圖形)三角形(板書)我們已經(jīng)認(rèn)識了什么是三角形,誰能說出三角形有什么特點(diǎn)?生回答。(互相補(bǔ)充) (課件演示三條線段圍成三角形的過程)

  三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及它的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。

  2、現(xiàn)在,我們來玩一個跟三角形的角有關(guān)的游戲。只要大家說出三角形任意兩個角的度數(shù),老師就能猜出第三個角,你們相信嗎?

  要求每個4人小組拿出本組預(yù)先準(zhǔn)備的學(xué)具袋。(內(nèi)含四個不同的三角形,包括直角、銳角和鈍角三角形至少各一個,且要求大小不一。)

  3、活動——量一量:每人任意拿出一個自己帶來的三角形,用量角器量出三角形中三個角的度數(shù),并寫在三角形中。(獨(dú)立完成,非小組合作。)

  然后分別請幾個學(xué)生報出不同三角形的兩個角的度數(shù),教師當(dāng)即說出第三個角的度數(shù)。(事先向?qū)W生說明誤差僅為3、4度左右。)

  你們知道老師是怎么猜出來的嗎?

  到底它們之間有什么樣的秘密呢?我們今天這節(jié)課就要來揭開這個秘密。

  (二)、動手操作,探究新知

  1、探究特殊三角形的內(nèi)角和

  拿出兩個三角板,問:它們是什么三角形?(直角三角形)

  請大家拿出自己的兩個三角尺,在小組內(nèi)說說每一個三角尺上三個角的度數(shù),并求出這兩個直角三角形的內(nèi)角和。從剛才兩個三角形內(nèi)角和的計算中,你們發(fā)現(xiàn)了什么?

  (這兩個三角形的內(nèi)角和都是180°)。這兩個三角形都是直角三角形,并且是特殊的三角形。

  【設(shè)計意圖】三角板是學(xué)生非常熟悉的學(xué)習(xí)用具,度數(shù)也是非常清楚,通過計算學(xué)生熟悉的三角板內(nèi)角和來驗證這個結(jié)論,學(xué)生也容易接受。

  2、探究一般三角形內(nèi)角和

  (1)猜一猜。

  猜一猜其它三角形的內(nèi)角和是多少度呢?(可能是180°)

  (2)操作、驗證一般三角形內(nèi)角和是180°。

  所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明?(可以先量出每個內(nèi)角的度數(shù),再加起來。)

  那就請小組共同計算吧!將學(xué)生采用分組的方法分成銳角三角形組、直角三角形組、鈍角三角形組、等腰三角形組,各組在白紙上任意畫三角形,并量出每個內(nèi)角的度數(shù),計算三角形內(nèi)角和。由組長統(tǒng)計記錄員記錄各組的內(nèi)角和情況。

  (3)小組匯報結(jié)果。

  請各小組匯報探究結(jié)果。提問:你們發(fā)現(xiàn)了什么?

  小結(jié):通過測量計算我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°左右。

  【設(shè)計意圖】學(xué)生任意畫的三角形,有大的、有小的,有各種類型的,不論是什么樣的三角形,學(xué)生都親自動手動筆算出內(nèi)角和。這個探索過程簡單學(xué)生又容易接受。

  3、操作驗證

  (1)動手操作,驗證猜測。

  沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?請同學(xué)們動腦筋想一想,能通過動手操作來驗證嗎?(先小組討論,再匯報方法)

  (2)學(xué)生操作,教師巡視指導(dǎo)。

  (3)全班交流匯報驗證方法、結(jié)果。

  學(xué)生放在投影儀上展示給大家看。(剪拼、撕拼、折拼)

  我們可以得出一個怎樣的結(jié)論?(三角形的內(nèi)角和是180°)

  引導(dǎo)學(xué)生通過剪拼、撕拼和折拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角,證實三角形內(nèi)角和確實是180°,測量計算有誤差。

  【設(shè)計意圖】學(xué)生通過親自動手操作,將三角形的三個內(nèi)角剪拼成一個平角,形象、直觀地說明了“三角形內(nèi)角和是180度”這個結(jié)論。

  5、辨析概念,透徹理解。

  (出示一個大三角形)它的內(nèi)角和是多少度?

  (出示一個很小的三角形)它的內(nèi)角和是多少度?

  一塊三角尺的內(nèi)角和180°,兩塊同樣的三角尺拼成的一個大三角形的內(nèi)角和又是多少呢?(學(xué)生有的`答360°,有的180°.)

  把大三角形平均分成兩份。每個小三角形的內(nèi)角和是多少度?(生有的答90°,有的180° )這兩道題都有兩種答案,到底哪個對?為什么?(學(xué)生個個臉上露出疑問。)

  大家可以在小組內(nèi)用三角尺拼一拼,也可以畫一畫,互相討論。

  學(xué)生發(fā)現(xiàn):三角形不論位置、大小、形狀如何,它的內(nèi)角和總是180°

  (三)小結(jié)

  剛才同學(xué)們用很多方法證明了無論是什么樣的三角形內(nèi)角和都是180°,現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  (四)、鞏固練習(xí),拓展應(yīng)用

  下面,我們就根據(jù)三角形內(nèi)角和的知識來解決一些相關(guān)的數(shù)學(xué)問題。(課件)

  1、求三角形中一個未知角的度數(shù)。

  在三角形中,已知∠1=85°,∠2=65°,求∠3。

  2、判斷

  (1)一個三角形的三個內(nèi)角度數(shù)是:90°、75°、25°。( )

  (2)一個三角形至少有兩個角是銳角。 ( )

  (3)鈍角三角形的內(nèi)角和比銳角三角形的內(nèi)角和大。 ( )

  (4)直角三角形的兩個銳角和等于90°。 ( )

  3、解決生活實際問題。

  (1)爸爸給小紅買了一個等腰三角形的風(fēng)箏,它的一個底角是70°,它的頂角是多少度?

  (2)交通警示牌“讓”為等邊三角形,求其中一個角的度數(shù)。

  4、拓展練習(xí)。

  利用三角形內(nèi)角和是180°,求出下面四邊形、六邊形的內(nèi)角和?(課件)

  小組的同學(xué)討論一下,看誰能找到方法。

  六、課堂總結(jié)

  通過這節(jié)課的學(xué)習(xí),你有哪些收獲?

《三角形的內(nèi)角和》教學(xué)設(shè)計3

  教學(xué)內(nèi)容:

  義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書XX版小學(xué)數(shù)學(xué)四年級下冊第42~46頁

  教學(xué)目標(biāo):

  1、通過量、剪、拼、折等數(shù)學(xué)活動,讓學(xué)生親自實踐操作,發(fā)現(xiàn)規(guī)律,主動推導(dǎo)并得出“三角形內(nèi)角和是180°”的結(jié)論,會應(yīng)用這一規(guī)律進(jìn)行計算。

  2、在操作、驗證三角形內(nèi)角和的過程中,體驗解決問題方法的多樣性,發(fā)展空間觀念,提高初步的邏輯思維能力。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  1、談話:我們已經(jīng)認(rèn)識了三角形,你知道哪些關(guān)于三角形的知識?

  2、我們在討論三角形知識的時候,三角形中的三個好朋友卻吵了起來,想知道是怎么回事嗎?我們一起去看看吧!

  播放課件

  詳細(xì)內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是的!币粋小的銳角三角形很委屈的樣子說:“是這樣嗎?”(它們在爭論誰的內(nèi)角和大。)

  你知道什么是三角形的內(nèi)角和嗎?

  通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個內(nèi)角的度數(shù)和。

  3、故事中到底誰說得對呢?今天我們就來研究三角形的'內(nèi)角和。

  【設(shè)計意圖】從學(xué)生的心理、興趣和意愿為出發(fā)點(diǎn),利用故事的形式提出疑問,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生探索的積極性。

  二、自主探究、發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點(diǎn)

  (1)量一量

  師:你認(rèn)為怎樣能知道三角形的內(nèi)角和?

  生:把三角形的三個內(nèi)角分別量出來,再用加法算出三角形的內(nèi)角和。

  學(xué)生活動(小組合作---每組準(zhǔn)備三種不同的三角形)量角,求和,完成第43頁的表格。

  學(xué)生交流匯報測量結(jié)果。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形還是鈍角三角形,內(nèi)角和都是180°。

  (在量的過程中,由于誤差,有的學(xué)生可能算出內(nèi)角和在180°左右,這時教師要相機(jī)誘導(dǎo):在測量的過程中出現(xiàn)一些誤差是正常的,因為同學(xué)們畫的角不夠標(biāo)準(zhǔn),量角器的不同,還有本身測量的原因都可能導(dǎo)致誤差。)

  師:看來量一量會出現(xiàn)誤差,那么你還有其它的更科學(xué)的辦法進(jìn)行驗證嗎?

  (2)拼一拼

  學(xué)生分小組活動,教師參與學(xué)生的活動,并給予必要的指導(dǎo)。

  學(xué)生展示交流,師:從大家的交流中,我們發(fā)現(xiàn)都可以把三角形的三個內(nèi)角拼成一個平角,證明“三角形內(nèi)角和是180°” 。

  (3)折一折

  小組活動,學(xué)生交流

  生1:將正方形(或長方形)紙沿對角線對折,這樣,就折成了兩個大小一樣的三角形。因為正方形(或長方形)的四個直角的和是360°,所以三角形的內(nèi)角和就是它的一半,是180°。

  生2:直角三角形的兩個銳角可以折成一個直角,也就是說,在直角三角形中,兩個銳角的和是90°,因此三角形內(nèi)角和就是180°。

  2、歸納

  師:通過剛才的活動,我們得出了什么結(jié)論?

  生:三角形的內(nèi)角和等于180°。

  3、師談話:三個三角形爭論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點(diǎn)什么?

  學(xué)生暢所欲言,對得出的規(guī)律做系統(tǒng)的整理。

  【設(shè)計意圖】動手實踐,自主探索,親身體驗,是學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生分組合作,量一量、拼一拼、折一折,通過多種感官參與比較、分析從而自主探索得出結(jié)論,得到的不僅是三角形內(nèi)角和的知識,也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。

  三、靈活運(yùn)用,鞏固練習(xí)

  師:好,大家已經(jīng)發(fā)現(xiàn)了“三角形內(nèi)角和是180°”這一規(guī)律,你能應(yīng)用這個規(guī)律解決一些實際的問題嗎?

  1、判斷

  鈍角三角形比銳角三角形的內(nèi)角和大。 ( )

  銳角三角形的兩個內(nèi)角和小于90°。 ( )

  一個三角形最少有兩個銳角。 ( )

  一個鈍角三角形最少有一個鈍角。 ( )

  學(xué)生判斷并說出理由。

  2、自主練習(xí)第6題

  練習(xí)時,先讓學(xué)生獨(dú)立填空,再說說自己是怎么想的,然后用量角器驗證計算的結(jié)果。

  小結(jié):以后如果遇到求一個三角形內(nèi)未知角的度數(shù)時,我們可以用計算的方法算一算,簡單又精確。

  3、游戲:選度數(shù),組三角形

  (課件顯示如下)

  請選出三個角的度數(shù)來組成一個三角形

  10° 18° 15° 150° 130° 72°

  20° 50° 70° 35° 75°

  52° 56° 54° 58° 60°

  學(xué)生回答的同時,教師操作課件,把學(xué)生選擇的度數(shù)拖入方框內(nèi),通過電腦計算相加是否等于180°,來驗證學(xué)生的選擇是否正確。驗證學(xué)生選的對了以后,再讓學(xué)生判斷選擇的度數(shù)所組成的三角形按角的大小分類,并說出理由。

  [設(shè)計意圖]用已學(xué)到的新知解決實際數(shù)學(xué)問題,認(rèn)識學(xué)數(shù)學(xué)的價值,再次體驗成功,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。尤其是第三個練習(xí),依據(jù)學(xué)生的年齡特征和認(rèn)知水平,設(shè)計探索性和開放性的問題,注重拓寬學(xué)生的思維活動空間。

  四、課堂總結(jié)、深化認(rèn)識

  談話:這節(jié)課你學(xué)會了什么?解決了什么問題?是怎樣解決的?

  【設(shè)計意圖】不僅從知識方面進(jìn)行總結(jié),還引導(dǎo)學(xué)生回顧發(fā)現(xiàn)問題、提出問題、解決問題的過程,關(guān)注學(xué)生學(xué)習(xí)過程中的情感體驗。既讓學(xué)生習(xí)得一種學(xué)習(xí)方法,又培養(yǎng)了學(xué)習(xí)興趣。

  課后反思:

  本節(jié)課學(xué)生以小組為單位進(jìn)行合作學(xué)習(xí),從自己的已有經(jīng)驗出發(fā),積極地進(jìn)行操作、測量、計算,并對自己的結(jié)論進(jìn)行思考、分析。在充分發(fā)揮學(xué)生主體作用,放手讓學(xué)生開展探究的同時,教師也恰到好處的發(fā)揮了引導(dǎo)作用。整個探究過程學(xué)生是自主的、有積極性的,在獲得數(shù)學(xué)結(jié)論的同時學(xué)習(xí)了科學(xué)探究的方法,為今后的學(xué)習(xí)打下了堅實的基礎(chǔ)。

《三角形的內(nèi)角和》教學(xué)設(shè)計4

  【教學(xué)目標(biāo)】

  1、學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2、在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。

  3、體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學(xué)重點(diǎn)】探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。

  【教學(xué)難點(diǎn)】對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。

  【教具準(zhǔn)備】課件、表格、學(xué)生準(zhǔn)備不同類型的三角形各一個,量角器。

  【教學(xué)過程】

  一、激趣引入。

  1、猜謎語

  師:同學(xué)們喜歡猜謎語嗎?

  生:喜歡。

  師:那么,下面老師給大家出個謎語。請聽謎面:

  形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單。(打一圖形)大家一起說是什么?

  生:三角形

  2、介紹三角形按角的分類

  師:真聰明!!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類

  師分別出示卡片貼于黑板。

  3、激發(fā)學(xué)生探知心里

  師:大家會不會畫三角形啊?

  生:會

  師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!

  生:試著畫

  師:畫出來沒有?

  生:沒有

  師:畫不出來了,是嗎?

  生:是

  師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學(xué)習(xí)有關(guān)三角形角的知識“三角形內(nèi)角和”(板書課題)

  二、探究新知。

  1、認(rèn)識三角形的'內(nèi)角

  看看這三個字,說說看,什么是三角形的內(nèi)角?

  生:就是三角形里面的角。

  師:三角形有幾個內(nèi)角啊?

  生:3個。

  師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標(biāo)上角1角2角3,請同學(xué)們也拿出桌子上三角形標(biāo)出(教師標(biāo)出)

  師:你知道什么是三角形“內(nèi)角和”嗎?

  生:三角形里面的角加起來的度數(shù)。

  2、研究特殊三角形的內(nèi)角和

  師:分別拿出一個直角三角板,請同學(xué)們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?

  生:算一算:90°+60°+30°=180° 90°+45°+45°=180°

  師:180°也是我們學(xué)習(xí)過的什么角?

  生:平角

  師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  3、研究一般三角形的內(nèi)角和

  師:猜一猜,其它三角形的內(nèi)角和是多少度呢?

  生:

  4、操作、驗證

  師:同學(xué)們猜的結(jié)果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?

  要求:

  (1)每4人為一個小組。

  (2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?

  (3)驗證的方法不只一種,同學(xué)們要多動動腦子。

  師:好,開始活動!

  師:巡視指導(dǎo)

  師:好!請一組匯報測量結(jié)果。

  生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。

  師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結(jié)果不準(zhǔn)確。

  生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個平角,是180度。

  師:好!非常好!

  師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)

  生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。

  師:老師也做了一個實驗看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)

  現(xiàn)在老師問同學(xué)們,三角形的內(nèi)角和是多少?

  生:180度。

  師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度,F(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。

  三、解決疑問

  師:好!請同學(xué)們回憶一下,剛才課前老師讓同學(xué)們畫出有兩個直角的三角形畫出來了嗎?

  生:沒有

  師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?

  生:兩個直角是180度,沒有第三個角了。

  師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?

  生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。

  師:學(xué)會了知識,我們就要懂得去運(yùn)用。

  四、鞏固提高。

  1、填空。

  (1)三角形的內(nèi)角和是()度。

  (2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。

  2、求下面各角的度數(shù)。

  (1)∠1=27° ∠2=53° ∠3=()這是一個()三角形。

  (2)∠1=70° ∠2=50° ∠3=()這是一個()三角形。

  3、判斷每組中的三個角是不是同一個三角形中的三個內(nèi)角。

  (1)80° 95° 5°( )

  (2)60° 70° 90°( )

  (3)30° 40° 50°( )

  4、紅領(lǐng)巾是一個等腰三角形,求底角的度數(shù)。(多媒體出示)

  對學(xué)生進(jìn)行思品教育。

  5、思考延伸。

  根據(jù)三角形內(nèi)角和是180度,算一算四邊形和八邊形的內(nèi)角和是多少?

  6、游戲:幫角找朋友每組卡片中,哪三個角可以組成三角形?)每組卡片中,哪三個角可以組成三角形?)60°90°45°30°⑴60°、90°、45°、30°54°46°52°

  五、總結(jié)。

《三角形的內(nèi)角和》教學(xué)設(shè)計5

  教學(xué)目標(biāo):

  1、掌握三角形內(nèi)角和是180°,并能應(yīng)用這一規(guī)律解決一些實際問題。

  2、讓學(xué)生經(jīng)歷“猜想、動手操作、直觀感知、探索、歸納、應(yīng)用”等知識形成的過程,掌握“轉(zhuǎn)化”的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生動手實踐能力,發(fā)展學(xué)生的空間思維能力。

  3、在活動中,讓學(xué)生體驗主動探究數(shù)學(xué)規(guī)律的樂趣,體驗數(shù)學(xué)的價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,同時使學(xué)生養(yǎng)成獨(dú)立思考的.好習(xí)慣。

  教學(xué)重點(diǎn):

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)難點(diǎn):

  三角形內(nèi)角和的探索與驗證。

  教學(xué)準(zhǔn)備:

  量角器各種類型的三角形(硬的紙板)三角板

  教學(xué)過程:

  一、設(shè)疑激趣,導(dǎo)入新課

  師:今天老師給大家?guī)砹艘晃慌笥?課件)出示三角形,

  師:對于三角形你有哪些認(rèn)識與了解。

  生:三角形有銳角三角形、直角三角形、鈍角三角形

  生:由三條線段圍成的平面圖形叫三角形。

  師:介紹內(nèi)角、內(nèi)角和

  三角形中每兩條邊組成的角叫做三角形的內(nèi)角。

  師:三角形有幾個內(nèi)角。

  生:三個。

  師:這三個角的和,就叫做三角形的內(nèi)角和。你知道三角形內(nèi)角和是多少度?

  生1:我通過直角三角板知道的

  生2:我通過長方形中四個角都是直角,是360度,三角形是長方形的一半,所以是180度

  生3:我預(yù)習(xí)了,三角形內(nèi)角和就是180度)

  師:是不是向他們說的一樣,所有的三角形內(nèi)角和都是180度呢?

  二、自主探索,進(jìn)行驗證

  師:你打算怎樣驗證呢?

  生1用量角器量出每個角的度數(shù),再加一加看看是不是180度生2:把三角形撕下來

  師:怎么撕?象這樣撕嗎?(作亂撕狀),能說的詳細(xì)些具體些嗎?生2:(補(bǔ)充),把三個角撕下來,拼在一起,看能不能拼成一個平角

  生3:把三個角順次畫下來也可以

  生4:拼一拼的方法

  師:好!同學(xué)們想出了這么多辦法,下面就用你喜歡的方法驗證師:CAI多媒體課件展示操作要求:

  合作探究:

  1、每四人一組,每組至少選兩個三角形,用你喜歡的方法驗證

  2、看那個小組驗證的方法新、方法多

  師:在巡視,并進(jìn)行個別操作指導(dǎo)

  三、交流探索的方法和結(jié)果

  孩子們探索的方法可能有三個:

  生1:一是用量角器量各個角,然后再算出三角形中三個角的度數(shù)和,用這種方法求的結(jié)果可能是180度也可能比180度小一些,也可能比180度大一些。

  生2:二是用轉(zhuǎn)化法,把三角形中三個角剪下來,拼在一起成為一個平角,由此得出三角形中三個角的和是180度。

  生3:三是折一折,把三個角折在一起,折在一起成為一個平角,由此得出三角形中三個角的和是180度。

  四、歸納總結(jié),體驗成功

  師:孩子們,三角形中三個角的度數(shù)和到底是多少度呢?

  生:180度。

  五、拓展應(yīng)用

  1、基礎(chǔ)練習(xí)

  2、等邊三角形、等腰三角形、直角三角形

  六、課堂小結(jié)

  談一談自己的學(xué)習(xí)收獲。

【《三角形的內(nèi)角和》教學(xué)設(shè)計】相關(guān)文章:

三角形內(nèi)角和教學(xué)設(shè)計06-10

《三角形的內(nèi)角和》教學(xué)設(shè)計05-08

《三角形內(nèi)角和》教學(xué)設(shè)計05-03

三角形內(nèi)角和教學(xué)設(shè)計02-13

三角形內(nèi)角和教學(xué)設(shè)計(精選15篇)03-09

三角形內(nèi)角和教學(xué)設(shè)計15篇06-28

三角形內(nèi)角和教學(xué)設(shè)計(15篇)06-28

《三角形內(nèi)角和》教學(xué)設(shè)計(精選15篇)06-08

三角形內(nèi)角和教學(xué)設(shè)計14篇06-12