97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

圓柱的體積教學設計

時間:2022-06-26 17:20:08 設計 我要投稿

圓柱的體積教學設計

  作為一位不辭辛勞的人民教師,通常需要準備好一份教學設計,教學設計是實現(xiàn)教學目標的計劃性和決策性活動。那么應當如何寫教學設計呢?下面是小編幫大家整理的圓柱的體積教學設計,僅供參考,歡迎大家閱讀。

圓柱的體積教學設計

圓柱的體積教學設計1

  學情分析:

  根據(jù)六年級的教學情況來看,班中絕大部分同學都能跟上現(xiàn)有的進度,通過本節(jié)課教學要使靈活運用圓柱體積的計算方法解決生活中一些簡單的問題,通過想象、操作等活動,理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。

  教學目標:

  1.通過切割圓柱體,拼成近似的長方體,從而推導出圓柱的體積公式這一教學過程,向學生滲透轉化思想。

  2.通過圓柱體體積公式的推導,培養(yǎng)學生的分析推理能力。

  3.理解圓柱體體積公式的推導過程,掌握計算公式;會運用公式計算圓柱的體積。

  教學重點:

  圓柱體體積的計算

  教學難點:

  圓柱體體積公式的推導

  教學用具:

  圓柱體學具、

  教學過程:

  一、復習引新

  1.求下面各圓的面積(回答)。

  (1)r=1厘米; (2)d=4分米; (3)C=6.28米。

  要求說出解題思路。

  2.提問:什么叫體積?常用的體積單位有哪些?

  3.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積×高)

  二、探索新知

  1、根據(jù)學過的體積概念,說說什么是圓柱的.體積。(板書課題)

  2、公式推導。(有條件的可分小組進行)

  (1)請同學指出圓柱體的底面積和高。

  (2)回顧圓面積公式的推導。(切拼轉化)

  3、回顧了圓的面積公式推導,你有什么啟發(fā)?

  生答:把圓柱轉化成長方體計算體積。

  4、動手操作。

  請2位同學上臺用教具來演示,邊演示邊講解。

  把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。

  多請幾組同學上臺講解,完善語言。

  提問:為什么用“近似”這個詞?

  5、教師演示。

  把圓柱拼成了一個近似的長方體。

  6、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?

  生答:拼成的物體越來越接近長方體。

  追問:為什么?

  生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。

  7、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。

  師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學們進行交流?

  出示討論題。

 。1)、拼成的長方體的底面積與原來圓柱的底面積有什么關系?為什么是相等的?

 。2)、拼成的長方體的高與原來圓柱的高有什么關系?為什么是相等的?

 。3)、拼成的長方體的體積與原來圓柱的體積有什么關系?為什么?

  板書:

  長方體體積 底面積 高

  圓柱體積 底面積 高

  8、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?

  生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。

  9、用字母如何表示。

  V=sh

  10、小結。

  圓柱的體積是怎樣推導出來的?計算圓柱的體積必須知道哪些條件?

  11、教學算一算

  審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?最后結果用體積單位)

  12、教學“試一試”

  小結:求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。

  三、鞏固練習

  課后“練一練”里的練習題。

  四、課堂小結

  這節(jié)課學習了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉化,把圓柱體切拼轉化成長方體,(在課題下板書:圓柱轉化長方體)得出了圓柱體的體積計算公式V=Sh。

圓柱的體積教學設計2

  教學內(nèi)容:

  青教版九年義務教育六年制小學數(shù)學六年級下冊第23—28頁。

  教材簡析:

  該信息窗呈現(xiàn)的是圓柱和圓錐形狀的冰淇淋盒,并分別標出了它們的底面直徑和高。引導學生提出問題,引入對圓柱、圓錐體積計算的探索和學習。“合作探索”中第一個紅點部分是學習圓柱的體積。

  教學目標:

  1、結合具體情境,通過探索與發(fā)現(xiàn),理解并掌握圓柱并能解決簡單的實際問題。

  2、經(jīng)歷探索圓柱計算公式的過程,進一步發(fā)展空間觀念。

  3、在觀察與實驗、猜測與驗證、交流與反思等活動中,初步體會數(shù)學知識的產(chǎn)生、形成與發(fā)展的過程,體驗數(shù)學活動充滿著探索與創(chuàng)造,初步了解并掌握一些數(shù)學思想方法。

  教學重點和難點:

  圓柱、圓錐體積的計算方法,以及體積公式的探索推導過程。

  教具準備:

  多媒體課件、圓柱體積學具、沙子等。

  第一課時

  教學過程:

  一、創(chuàng)設情境,激趣引入。

  談話:同學們,天氣漸漸熱了,在夏季同學們最喜歡的冷飲是什么?(生回答)

  課件出示:兩個圓柱體冰淇淋。

  談話:看,小明買了兩個冰淇淋,你能猜猜哪種包裝盒體積大嗎?

 。ㄉ聹y)這節(jié)課我們就來研究圓柱的體積。(板書課題——圓柱體的體積。)

  設計意圖:

  從生活中常見的例子導入新課,從中培養(yǎng)學生在生活中發(fā)現(xiàn)數(shù)學問題、提出問題的意識。學生的猜測為后面的實驗驗證做好了鋪墊,激發(fā)學生探究新知的欲望。

  二、回憶舊知,實現(xiàn)遷移。

  談話:怎樣求圓柱的體積呢?我們也許能從以前研究問題的方法里得到啟示,找到解決問題的辦法。請大家想一想,在學習圓的面積時,我們是怎樣推導出圓的面積計算公式的?

  (學生回答后,教師利用多媒體課件動態(tài)演示把圓等分切割,拼成一個近似的長方形,找出圓與所拼成的長方形之間的關系,進而推導出圓面積計算公式的過程。)

  設計意圖:

  通過回顧圓的面積的推導方法,巧妙地運用舊知識進行遷移。

  三、利用素材,探索新知。

 、褰涣鞑聹y

  談話:通過剛才的回顧,你們能想辦法將圓柱轉化成我們已經(jīng)學過的立體圖形來求體積嗎?

  生:我們學過長方體的體積,可不可以將圓柱轉化成長方體呢?

  師談話:你的`想法很好,怎樣轉化呢?

  生討論,交流。

  生匯報,可能會有以下幾種想法:

  1、先在圓柱的底面上畫一個最大的正方形,再豎著切掉四周,得到一個長方體,然后把切下的四塊拼在一起。

  2、可以把圓柱的底面分成許多相同的扇形,然后豎著切開,重新拼一拼。

  3、如果是橡皮泥那樣的,可以把它重新捏成一個長方體,就能計算出它的體積了。

  談話:請同學討論和評價一下,哪一種方法更合理呢?引導學生按照第二種方法進行驗證。

 、鎸嶒烌炞C

  學生動手進行實驗。

  談話:請每個小組拿出學具,按照剛才第3小組的方法把它轉化為近似的長方體,并研究轉化后的長方體和原來圓柱體積、底面積、高之間的關系。

  學生合作操作,集體研究、討論、記錄。

  設計意圖本環(huán)節(jié)讓學生親自動手 操作,再次感受“化圓為方”的思想。動手操作,是學生發(fā)現(xiàn)規(guī)律和獲取數(shù)學思想的重要途徑。

  四、分析關系,總結公式

  1、全班交流

  談話:哪個小組愿意展示一下你們小組的研究結果?

  引導學生發(fā)現(xiàn):

  轉化后的形狀變了,但是體積沒有變,底面的面積沒有變,高也沒有變。

  2、分析關系

  引導說出:圓柱體轉化成長方體后,雖然形狀變了,但是長方體的體積和原來圓柱的體積相等,長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。

  3、總結公式。

  談話:同學們真了不起!你們的發(fā)現(xiàn)非常正確。我們來看一看課件演示。

 。ㄕn件分別演示將圓柱等分成16份、32份、64份的割拼過程,學生觀察、思考。)

  談話:你發(fā)現(xiàn)了什么?

  引導觀察:分的份數(shù)越多,拼成的圖形就越接近長方體。

 。ㄕn件動態(tài)演示:圓柱的高——長方體的高,圓柱的底面積——長方體的底面積。)

  談話:其實大家剛才又采用了“化圓為方”的方法將圓柱轉化成了長方體。你現(xiàn)在能總結出圓柱體積的計算公式嗎?說一說你是怎樣想的。

  根據(jù)學生的回答教師板書:

  長方體的體積 = 底面積 × 高

  圓柱的體積 = 底面積 × 高

  談話:你能用字母表示圓柱的體積計算公式嗎?V=Sh

  設計意圖教師給予適當?shù)难菔,溝通圓面積計算公式的推導方法與圓柱體積計算公式推導方法的共同點——轉化法,便于學生順利推導出圓柱體積的計算公式。

  五、利用公式,解決問題。

  自主練習第1題、第2題、第3題

  設計意圖鞏固練習及時讓學生利用結論解決問題,感受自己研究的重要價值,激發(fā)學習數(shù)學的興趣。

  六、課堂總結

圓柱的體積教學設計3

  一、教學對象及學習內(nèi)容特點分析:

  圓柱的體積是小學立體幾何圖形中的重要內(nèi)容之一,是已學的長方體知識和將學的圓椎體知識的橋梁,其公式是長方體、正方體體積公式V=Sh的延續(xù)。

  二、教學目的:

  學生能借助媒體提供的資源理解和掌握圓柱體積的計算公式。

  學生能應用圓柱體積公式進行圓柱體積的計算。

  學生能利用知識之間相互"轉化"的思想探索解決新的問題。

  三、教學基本指導思想、教學策略和方法:整個過程,充分利用計算機的優(yōu)點,以小組學習的形式,發(fā)揮學生的主體作用,教師是學生學習過程的組織者和輔導者。長方體的體積公式和平面圖形的面積公式已學過,因此引導學生用轉化的思想去學習,并創(chuàng)設情景,讓學生自己發(fā)現(xiàn)問題,利用電腦、課本、實物提供的資源協(xié)商解決問題,使全體學生都成為學習的主人。

  四、教學運用的主要手段、技術、材料:電腦網(wǎng)絡、實物投影、圓柱體。

  五、教學過程的設想和點評

  教師的教學行為學生的學習行為點評

  第一階段:創(chuàng)設情景,設疑引趣。

  教師故事引入:圓柱形狀的"轉筆刀"和"漿糊筆"迎著朝陽高高興興上學了,走著走著,它們就為哪個體積大而爭論起來,"轉筆刀"很自信地說:"看我這么胖,肯定是我的體積大!""漿糊筆"很不服氣地說:"我比你高多了,一定是我的體積大!"就這樣你一言我一語,爭論了很久還沒個結果。

  提問:小組討論尋找解決這兩個圓柱體積大小的方法。

  1、學生小組討論解決的`方法。

  2、小結歸納:解決圓柱的體積的方法:尋找一種方法,導出圓柱的體積公式,然后應用公式求圓柱的體積。

  通過情景的創(chuàng)設,激發(fā)學生的學習熱情,讓他們發(fā)現(xiàn)問題,并通過討論找出解決的方法,使學生從被動學習變?yōu)橹鲃訉W習,學生對這節(jié)課的學習也從宏觀上得到了解。學生解決問題的方法有出人意料的回答,老師根據(jù)情況,給予恰當?shù)墓膭钚缘脑u價,以激發(fā)學生的思維。

  第二階段: 自主探究。概括規(guī)律

  1、電腦提供學生探索資源:

 。1)平面圖形(長方形、正方形、平行四邊形、三角形、梯形、圓形)面積公式和立體圖形(長方體、正方體)體積公式的導出過程。

  (2)把圓柱的底面分成許多相等的扇形,然后把圓柱切開,拼成一個近似的長方體。

  2、學生反饋自學內(nèi)容,師生共同導出圓柱的體積公式V=Sh1、學生打開電腦"自能學習"中的"尋方法",有選擇地看學過的平面圖形的面積公式和立體圖形體積公式的導出過程,從中找到推導圓柱體積公式的方法

  2、學生通過觀察圓柱公式的推導過程。

  3、小組討論填寫實驗報告。

  4、師生導出圓柱的體積公式后,學生自學課本例題,并完成例4內(nèi)容。通過利用資源、自能學習,讓全體學生都能動腦、動口、動手參與到學習中去,使學生學會學習、學會協(xié)作,所學知識的理解更為深刻、透徹。在自學的過程中教師通過監(jiān)控密切觀察著學生的學習情況,發(fā)現(xiàn)問題及時解決。

  圓柱體積公式的推導過程,學生會有不同的方法,如用課本的方法或用類比的方法,教師應給予恰當?shù)脑u價。

  第三階段:拓展公式,自能訓練。

  1、公式拓展。

  在日常生活中,圓柱的底面積通常沒有直接給出,那么我們通過什么條件也能求出圓柱的底面積呢?

  2、教師小結:無論已知圓柱的底面半徑、直徑還是底面周長,我們都必須根據(jù)V=Sh,先求出圓柱的底面積,然后乘以高才能求出圓柱的體積。

  3、質(zhì)疑

  1、學生可根據(jù)已學的"圓的面積"公式導出。

 。ó斠阎獔A柱底面的半徑時V=∏r2h、當已知直徑時V=∏(d÷2)2h、當已知周長時,先求半徑,再求底面積,然后求圓柱體積。

  2、判斷。并說明原因

 。1) 一個圓柱體的底面積是8平方厘米,高是6厘米,這個圓柱體的體積是48立方厘米。

 。2) 一個圓柱的底面積是10平方米,高是10米,它的體積是100平方米。

 。3) 一個圓柱體鐵罐,底面直徑是2米,高是3米,求它的體積。 列式是:3.14×22×3

  1、根據(jù)生活實際,當知道圓柱底面半徑、直徑或周長時,怎樣求圓柱的體積這個問題,可以讓學生充分拓展思維,不要停留在只會死記公式、生搬硬套的低層次上。并大力鼓勵、表揚愛動腦筋的同學

  2、通過練習,學生對基本知識有一定的理解,教師也了解了學生對知識的掌握情況。

  第四階段:反饋學習、應用提高。

  1、提出練習要求:先做"鞏固"練習,有余力的再做"提高"練習。

  2、小結練習情況,及時表揚對而快的同學及小組

  3、回應開頭,解決"漿糊筆"和"轉筆刀"爭論的問題。學生在電腦上完成。

  1、賽車游戲:看誰跑得快。

  (1)圓柱的底面積是15平方米,高是3米,體積是( )立方米。

 。2)已知圓柱的高是20厘米,底面積100平方厘米,圓柱的體積是( )平方厘米。

 。3)一個圓柱形的糧囤,從里面量底面半徑是2米,高是2.5米。這個糧囤能裝稻谷( )立方米。

 。4)一個圓柱的體積是80立方分米,底面積是16平方分米,它的高是( )分米。

  2、提高練習?寄阒腔郏嚎凑l攀得高。

  (1)一個圓柱,它的底面直徑4厘米,高是3米,體積是( )立方厘米。

  (2)一個圓柱體鐵架,它的底面周長是62.8分米,高是6分米,它的體積是( )立方分米。

  在計算過程中,學生會遇到不少問題,可通過師生交流或小組互相幫助解決,從而實現(xiàn)互幫、互學共同提高。

  六、歸納總結、自我評價。

  1、提出要求,學生談收獲。

  2、總結本節(jié)情況。 談收獲,并作出自我評價。通過談收獲,體現(xiàn)學習的自主性,體驗獲得成功的樂趣。

  七、對教學過程的設想和點評:

  新課程標準注重小學生對周圍世界與生俱來的探究興趣和需要,在小學階段,學生的知識積累與思維能力較為有限,強調(diào)用符合小學生年齡特點的方式學習,提倡課程貼近小學生的生活,這節(jié)課從學生身邊學習用品"卷筆刀"和"漿糊筆"的入手,通過擬人的方式,由它們上學過程中引起的爭論導出學習的內(nèi)容,激發(fā)學生學習的積極性。這樣在教學進程中安排好相關的情景組織學生參與其中,親歷過程,自主地開展活動,通過看、做、玩、想等方式,讓學生既學會知識與技能,又培養(yǎng)智能、情感態(tài)度與價值觀,促進學生科學素養(yǎng)的形成。

  新課標還積極倡導讓學生親身經(jīng)歷以探究為主的學習活動,培養(yǎng)他們的好奇心和探究欲,使他們學會探究解決問題的策略,為他們終身的學習和生活打好基礎。這是一節(jié)在網(wǎng)絡環(huán)境下開展的探究型數(shù)學課,引入后,教師則大膽放手,營造了一個開放的探究空間,通過學生小組討論尋找比較圓柱大小的方法,引導學生通過自主、合作探究這種學習方式進行實踐活動,觀察由圓柱轉變成已學過長方體的過程,在觀察中相互啟發(fā),共同提高,形成共識后并加以記錄。再將大家的記錄結果對比、討論、從而得出結論:圓柱的體積=轉變成的長方體的體積,從而導出圓柱的體積公式V=SH。在這一過程中,教師以學生的發(fā)展為本,關注每一位的發(fā)展,珍視每位學生的探究體驗及獨特見解,在學生探究結果的表述過程中,對同一個問題,不同的人可以得出不同的結論,他們通過互相交流互相討論,思維更是得到發(fā)展與創(chuàng)新。不僅激發(fā)了每一位學生主動參與探究實踐活動,更讓學生在探究中學會合作、懂得思考、大膽發(fā)表自己的獨特見解,更學會傾聽、尊重他人的意見,從而實現(xiàn)互幫、互學共同提高,并在探究中發(fā)現(xiàn)、學習,激發(fā)學生學習的興趣,培養(yǎng)了實踐的能力。

  網(wǎng)絡環(huán)境下的教學方式不僅改變了以往教師滿堂灌的現(xiàn)象,在拓寬學生知識面的同時,更培養(yǎng)了學生搜集信息、處理信息并進行合理解釋的能力,大大地激發(fā)了學生自主學習的積極性,學生的創(chuàng)新意識日漸增強,真正實現(xiàn)了利用信息技術為教學內(nèi)容服務。

圓柱的體積教學設計4

  教學內(nèi)容:教材第25、26頁例4、“試一試”、“練一練”和練習七的1、2題

  教學目標:

  1、進一步深入地引導學生去了解圓柱,讓學生掌握圓柱的體積計算公式,并能解決實際問題。

  2、培養(yǎng)學生自學能力,動手能力,觀察分析和歸納知識的能力,讓學生理解“轉化”的方法。

  教學重點:理解和掌握圓柱體積的計算公式。

  教學難點:圓柱體積計算公式的推導。

  教學準備:圓柱體模具。

  教學過程:

  預習作業(yè)檢測

  學習計算圓的面積時,是怎樣得出圓面積的計算公式的?

  求下面各圓的'面積

  R=1厘米求Sd=4分米求Sc=6.28米求S

  長方體與正方體的體積都可以用什么公式來表示?

  圓柱底面積/平方米高/米體積/立方米

  0.61.2

  0.253

  合作探究

  你們是怎么知道圓柱的體積=底面積×高的呢?生答預習得知。

  課本上是怎么把圓柱體和長方體聯(lián)系在一起的呢?

  生答,同時師相機用課件展示圓柱體和長方體相互轉化的畫面。

  用切拼法把圓柱體切成16等份、32等份、64等份,由此得出結論:

  ○1等份越多,拼成的物體越接近于長方體。

  ○2長方體與圓柱體等底等高。

  ○3長方體體積=圓柱體體積

  ○4圓柱的體積=底面積×高(V=sh)。

  根據(jù)剛才的結論完成下面的題目:

  ○1一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,

  它的體積是多少?生獨立完成后,師有選擇的找?guī)孜粚W生

  的作業(yè)進行投影展示,全班交流評價。

  ○2一個圓柱形狀的零件,底面半徑5厘米,高8厘米,這

  個圓柱的體積是多少立方厘米?

  引導學生讀題,思考。指名說出自己想的過程。生獨立解

  答,展示、交流、評價。

  當堂達標檢測

  1、“練一練”第1題。

  2、練習七第2題。

  3、“練一練”第2題。

  教學反思:

圓柱的體積教學設計5

  教學內(nèi)容:

  人教版六年級下冊第19~20頁圓柱體積公式的推導和練習三的第1~3題。

  教學目標:

 1、通過觀察、操作、討論等教學活動過程,理解圓柱體積計算公式的推導過程,并會正確地計算圓柱的體積。

  2、在圖形的變換中,培養(yǎng)遷移能力,邏輯思維能力,并進一步發(fā)展其空間觀念。

  3、探索和解決問題,體驗轉化及極限的思想方法。

  4、學會由未知向已知轉化的學習方法。

  教學重點:掌握和運用圓柱體積計算公式。

  教學難點:掌握圓柱體積公式的推導過程。

  教學方法:嘗試指導法

  學法指導:猜想→討論→操作→概括→嘗試→辨析→總結

  教學用具:圓柱的體積公式演示課件。

  學習用具:準備推導圓柱體積計算公式所用的學具。

  教學過程:

一、激疑引入

  同學們,你們看,茶葉罐是什么形狀的?如何求它的體積?你有辦法嗎?……今天,就讓我們一起來研究圓柱體積的計算方法(板書課題:圓柱的體積)。

  二、探究新知

  1、猜想

  現(xiàn)在該怎樣來計算圓柱的體積呢?不妨大膽猜想一下好嗎?

  2、表揚鼓勵,實踐遷移

 。1)有同學能把圓柱轉化成我們已學過的立體圖形,來計算它的體積,真是既聰明又能干!

  讓學生互相討論,思考應如何轉化,然后組織全班匯報。(把圓柱的底面分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉化成近似的長方體了。)

 。2)操作:學生操作學具,切割拼合。

 。3)感知:將圓柱體模具(已切好)當場演示。

  ①讓一位學生把切割好的.一半拿上又叉開;

 、诹硪晃粚W生將切割好的另一半拼合上去;

 、塾^察得到一個什么形體?同時你發(fā)現(xiàn)了什么?逐步引導學生觀察、對比、分析。

 。4)課件演示,讓學生明白:分成的扇形越多,拼成的立體圖形就越接近于長方體。

 。5)討論:圓柱與所拼成的近似長方體之間的有什么聯(lián)系?

  (6)匯報:你發(fā)現(xiàn)了什么?【圓柱→近似長方體:①體積相等;②底面積相等;③高相等;④表面積不相等!

 。7)概括總結

  ①讓學生試著總結公式;

 、诶蠋熢趯W生總結的基礎上用課件出示

  長方體的體積=底面積×高

  ↓ ↓ ↓

  圓柱體的體積=底面積×高

  用字母表示:v=sh

  3、運用新知,嘗試解答

  [做一做]一根圓柱形木料,底面積為75cm2,長90cm。它的體積是多少?

 。1)嘗試:讓學生理解題意,自己嘗試解答。

  (2)展示:根據(jù)v=sh可得:75×90=6750(cm3)

 。3)講評并強調(diào):計算體積時結果應用體積單位。

 。4)拓展:如果已知圓柱底面的半徑r和高h,該怎么來計算圓柱的體積呢?如果已知的是底面的直徑d和高h呢?

  讓學生獨立思考,寫出計算公式,再相互交流。

  得到:v=πr2h

  [完成教材第20頁例6]一個圓柱形水杯,從里面量底面直徑是8厘米,高是10厘米。已知一袋純牛奶有498mL。問這個杯子能不能裝下這袋牛奶?

1、教師引導學生:要回答這個問題,先要計算出杯子的容積。

  2、學生獨立計算杯子的容積,然后與牛奶的容積作比較,就完成了任務。

  三、鞏固練習

 1、完成下表。

  底面積/ m2

  高/m

  圓柱的體積/ m3

  7

  3


  5.6

  4


  2一個壓路機的前輪是圓柱形,輪寬2.5米,半徑1米。它的體積是多少立方米?

  四、全課小結

  同學們,今天我們學習了什么知識?你還有什么不懂的問題?

  五、布置作業(yè)(練習三第2、3題)

  板書設計

  圓柱的體積

  圓柱轉化近似長方體

  長方體的體積=底面積×高

  ↓ ↓ ↓

  圓柱的體積=底面積×高

  V柱=sh

  V柱=πr2h

圓柱的體積教學設計6

  【教學過程】

  一、揭示課題,確定目標

  談話:前面我們認識了圓柱,學習了圓柱的底面積、側面積和表面積,今天學習“圓柱的體積”。(教師板書,學生齊讀)

  啟發(fā):看到這個課題,你們會想到什么?這堂課要解決什么問題呀?(可能學生會提出以下幾個問題)

  引導:

 。1)什么是圓柱的體積?

 。2)圓柱的體積和什么有關?

 。3)圓柱的體積公式是怎樣推導出來的?

 。4)圓柱的體積是怎樣求出來的?

  (5)學習圓柱的體積公式有什么用?

  談話:對!剛才這幾位同學跟老師想的一樣。

  啟發(fā):圓柱的體積就是圓柱所占空間的大小

  談話:這堂課我們主要解決三個問題:(出示探究問題)

  1、圓柱的體積和什么有關?

  2、這個公式是怎樣推導出來的?

  3、學習了圓柱的體積能解決什么實際問題?

  【設計意圖】直接揭示課題,啟發(fā)學生自己提出教學的要求,這樣既創(chuàng)設了問題情境,激發(fā)學生學習的興趣,又使學生明確這堂課的教學目標。

  二、溫故知新,自學課本

  1、提出問題

  談話:現(xiàn)在請大家回憶一下,我們以前學過哪些立體圖形的體積計算。是怎樣計 算的?

  引導:我們已經(jīng)學過長方體、正方體的體積計算。(教師隨著學生的回答,逐一出示出上述圖形)。

  談話:長方體的體積=長×寬×高

  正方體的體積=棱長×棱長×棱長

  統(tǒng)一為:長方體或正方體的體積=底面積×高

  談話:長方體和正方體和今天學習的圓柱有什么顯著的區(qū)別?

  引導:長方體的面都是平面圖形,圓柱的側面是一個曲面。

  談話:因為圓柱的側面是一個曲面,計算圓柱的體積就比較困難了。能不能直接 用體積單位去量呢?

  引導:它的側面是一個曲面,用體積單位直接量是有困難的。

  2、引發(fā)猜想

  談話:圓柱的體積和什么有關系呢?(準備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)

  引導:圓柱體的體積既和底面積有關,又和高有關。

  3、自學課本

  談話:圓柱體的體積和底面積、高到底有什么關系呢?如何求圓柱體的體積?

  啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學生利用預先準備好的平均分成16份圓柱學具拼一拼,學生一邊看書,一邊操作。學生閱讀課本后,全班交流。)

  引導:我們用圖形轉化的方法,求圓柱的體積。

  談話:這個辦法很好。那么把圓柱轉化成什么圖形呢?

  引導:長方體。

  談話:以前我們學習圓的面積時也是運用轉化的策略,把圓轉化成近似的長方形,“化曲為直”、“化圓為方”推導出圓的面積計算公式。

 。ㄓ枚嗝襟w演示圓形的'轉化過程,邊出示、邊交流)

  【設計意圖】在不能用體積單位直接量的情況下,啟發(fā)學生運用轉化的數(shù)學思想解決問題。通過復習了舊知識,又為學習新知識作好鋪墊,能夠促進學生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結構。

  三、合作交流 發(fā)展能力

  談話:同學們觀察一下,拼成的是什么圖形?

  引導:近似的長方體。

  啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?

  引導:長都是許多弧線組成,不是直的。

  談話:這里我們把圓柱分成16等分,還能分嗎?

  談話:究竟能分多少份呢?

  引導:無數(shù)份,可以永遠分下去。

  談話:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個圖形就越接近于長方體。

  四、師生合作 歸納結論

  談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?

  匯報:把圓柱體轉化為近似的長方體,形狀變了,體積沒有變。

  談話:要求圓柱的體積,我們只要求轉化后的長方體的體積就可以了。

  匯報:

 。1)轉化后的近似長方體的底面積與原來的圓柱體的底面積相等。

 。2)轉化后的近似長方體的高與原來的圓柱體的高相等。

  因為:長方體的體積=底面積×高

  所以:圓柱的體積 =底面積×高

 。ń處熞髮W生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)

  長方體的體積=底面積×高

  圓柱的體積 =底面積×高

  交流:我們也可以用字母表示圓柱的體積計算公式:v = s h (板書)

  引導:剛才我們的猜想是正確的,圓柱的體積既和底面積有關,又和高有關。

  現(xiàn)在請同學們把圓柱體積公式的推導過程再完整地說一遍。

  談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關。

  通過分一分、拼一拼我們把圓柱轉化成了近似的長方體。

  通過比一比、算一算成功地推導出圓柱的體積計算公式,解決了我們前兩個要探究的問題。

  【設計意圖】要求每個學生動手操作,打破了過去教師演示教具學生看的框框,并滲透轉化、無限等數(shù)學思想,讓學生自己從嘗試中推導圓柱體積的公式。

圓柱的體積教學設計7

  教學目標:

  1、使學生熟練掌握圓柱的體積公式,能正確計算圓柱體積或圓柱形容器的容積。

  2、使學生體驗解決問題策略的多樣化,不斷激發(fā)學生以數(shù)學的好奇心和求知欲。

  3、培養(yǎng)學生分析問題,解決問題及實踐應用能力。

  教學重點:

  掌握有關圓柱的表面積和體積的計算,會綜合運用

  教學難點:

  運用所學的知識解決生活中的實際問題。

  學習過程:

  一、復習回顧

  1、下列圖形的面積公式是什么?

  長方形的面積=

  正方形的面積=

  平行四邊形的面積=

  梯形的面積=

  圓的`面積=

  2、長方體的表面積=

  圓柱的表面積=

  二、探究圓柱的體積公式:

  圓柱的體積= 。

  如果圓柱的體積用V表示,底面積用S表示,高用h表示,則圓柱的體積公式用字母表示為。

  如果圓柱的底面半徑為r,高用h表示,則圓柱的體積公式為。

  三、例題學習:

  把一個棱長6分米的正方體木塊切削成一個體積最大的圓柱體,這個圓柱的體積是多少立方分米?

  例2、一個底面半徑為3分米,高為8分米圓柱形水槽,把一塊石塊完全浸入這個水槽,水面上升了2分米,這塊石塊的體積是多少?

  四、課堂練習

  1、求下面圓柱的體積

  1)底面積0.6平方米,高0.5米2)底面半徑4厘米,高12厘米

  3)底面直徑5分米,高6分米

  2、一個圓柱形量桶,底面半徑是5厘米,把一塊鐵塊從這個量桶里取出后,水面下降3厘米,這塊鐵塊的體積是多少?

圓柱的體積教學設計8

  學 科:數(shù)學

  教學內(nèi)容:最新人教版六年級數(shù)學下冊第三章《圓柱的體積》

  教材分析:

  〈〈圓柱的體積〉〉是數(shù)學課程標準中“空間與圖形”領域內(nèi)容的一部分。〈〈圓柱的體積〉〉一課,是在學生已經(jīng)學過了圓面積公式的推導和長方體、正方體的體積公式的基礎上進行學習的,而這節(jié)課的順利學習將為以后圓錐體積的學習鋪平道路。學生已經(jīng)有了把圓形拼成近似的長方形的經(jīng)驗,聯(lián)想到把圓柱切拼成長方體并不難,但是學生還是喜歡用自己的方法解決問題,所以我給學生創(chuàng)設盡情展示自我的空間,通過自主的學習、合作探究、動手操作,讓學生感知立體圖形間的一些關系,從而解決生活當中常見的問題。由此、我制定以下三維教學目標:

  教學目標

  知識目標:

 。1)通過學生體驗圓柱體體積公式的推導過程,掌握圓柱的體積公式并能應用公式解決實際問題。

 。2)通過操作讓學生知道知識間的相互轉化。

  能力目標:

  倡導自主學習、小組合作、動手操作的學習方式,培養(yǎng)學生動手操作的能力,合作交流的意識。從而建立空間觀念培養(yǎng)學生的邏輯推理能力。

  情感目標:

  讓學生感受數(shù)學與生活的聯(lián)系,體驗探索數(shù)學奧秘的樂趣,培養(yǎng)學生學習數(shù)學的積極情感。

  教學重點:掌握和運用圓柱體積計算公式。

  教學難點:推導圓柱體積計算公式的過程。

  教具、學具準備:

  采用的教具為PPT課件和學具。(圓柱體切割組合學具,各小組自備所需演示的用具)。 教學過程:

  一、情景引入

  1、出示圓柱形水杯。

 。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的'?

 。2)你能用以前學過的方法計算出這些水的體積嗎?

 。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。

 。4)說一說長方體體積的計算公式。

  2、出示橡皮泥捏成的圓柱體。

  出示問題:大家想一想用什么辦法來求出這個圓柱體橡皮泥的體積呢?

  (有的學生會想到:老師將它捏成長方體就可以了;還有的學生會想到捏成正方體也可以的!)

  3、創(chuàng)設問題情景。

 。ㄕn件顯示)如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?

  剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)

 。ㄔO計意圖:問題是思維的動力。通過創(chuàng)設問題情景,可以引導學生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成任務驅動的探究氛圍。)

  二、新課教學

  設疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。

 。ㄒ唬⿲W生動手操作探究

  1、回顧舊知,幫助遷移

 。1)教師首先提出具體問題:圓柱體和我們以前學過的哪些幾何圖形有聯(lián)系? 啟發(fā)學生回憶得出:圓柱的上下兩個底面是圓形;側面展開是長方形:所以……

  (2)請大家回憶一下:在學習圓的面積時,我們是怎樣將圓轉化成已學過的圖形,來推導出圓面積公式的。

  (通過想象,進一步發(fā)展學生的空間觀念,由“形”到“體”;同時使學生感悟圓柱的體積與它的底面積和高的聯(lián)系,通過圓面積推導過程的再現(xiàn),為實現(xiàn)經(jīng)驗和方法的遷移作鋪墊)

  2、小組合作,探究推導圓柱的體積計算公式。

 。1)啟發(fā)猜想:可見,大部分圖形公式的推導都可以把所學的轉化為學過的。那么你覺得圓柱的體積和什么有關系?你能猜一猜圓柱的體積可以怎樣計算呢? (這是學生會有圓的面積想到把圓柱轉化為長方體)

  老師激勵同學們:大家同意他的猜想嗎?但我們還是要小心地驗證猜想的科學性。都說實踐出真知,接下來同學們以小組為單位拿出學具,動手嘗試著進行轉化,并說一說轉化的過程。

 。2)學生以小組為單位操作體驗。

  老師引導學生探究:

 、 說說你們小組是如何轉化的。這是一個標準的長方體嗎?為什么?

  ② 如果分割得份數(shù)越多,你有什么發(fā)現(xiàn)?(電腦演示轉化過程)

 、 這是同學們剛才的轉化過程。那書上是怎么說的?下面就請同學們打開書,自由讀,用直線標記,找出關鍵句。全班齊讀。

 。ǎ常┈F(xiàn)在再請一位同學到前面來演示轉化過程。其他同學邊觀察邊思考: ①切割后拼成了一個近似于什么的形體?

 、趫A柱的體積與拼成后的長方體的體積有什么關系?

  ③這個長方體的底面積等于圓柱的什么?

 、荛L方體的高與圓柱體的高有什么關系?

 。ǘ┙處熣n件演示

  1、課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成16份、32份、64份……),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。依次解決問題。 ①把圓柱拼成長方體后,形狀變了,體積不變。

 。ò鍟洪L方體的體積=圓柱的體積)

 、谄闯傻拈L方體的底面積等于圓柱的底面積,高就是圓柱的高。

 。ㄅ浜匣卮,演示課件,閃爍相應的部位,并板書相應的內(nèi)容。)

 、蹐A柱的體積=底面積×高 字母公式是V=Sh(板書公式)討論并得出結果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?

圓柱的體積教學設計9

  教學目標:

  1.知識與技能:運用遷移規(guī)律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,會用圓柱的體積公式計算圓柱形物體的體積。

  2.方法與過程:經(jīng)歷猜測、驗證、合作、動手操作等過程,體驗和理解圓柱體體積公式的推導過程。

  3情感、態(tài)度、價值觀:創(chuàng)設情境,激發(fā)學生學習的積極性。讓學生在主動學習的基礎上,逐步學會轉化的數(shù)學思想和數(shù)學法,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生抽象、概括的思維能力。

  教學重點和難點:

  圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。

  教具:

  圓柱的體積公式演示教具,圓柱的體積公式演示課件

  教學過程:

  一、教學回顧

  1、交代任務:這節(jié)課我們來學習《圓柱的體積》。

  2、回憶導入

  (1)、請大家想一想,我們在學習圓的面積時,是怎樣把圓變成已學過的圖形再計算面積的?

  (2)、我們都學過那些立體圖形的體積公式。

  二、積極參與探究感受

  1、猜測圓柱的體積和那些條件有關。(電腦演示)

  2、.探究推導圓柱的體積計算公式。

  小組合作討論:

  (1)將圓柱體切割拼成我們學過的什么立體圖形?

  (2)切拼前后的兩個物體什么變了?什么沒變?

  (3)切拼前后的兩個物體有什么聯(lián)系?

  課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。

 、侔褕A柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)

  ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內(nèi)容。)

 、蹐A柱的體積=底面積×高字母公式是V=Sh(板書公式)

  2、練一練:一根圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?

  3、要用這個公式計算圓柱的體積必須知道什么條件?

  三、練習

  1、填空

  (1)、圓柱體通過切拼轉化成近似的( )體。這個長方體的底面積等于圓柱體的( ),這個長方體的高等于圓柱體( ) 。因為長方體的體積等于

  (),所以,圓柱體的體積等于()用字母表示

  () 。

  (2)、底面積是10平方米,高是2米,體積是

  ()。

  (3)、底面半徑是2分米,高是5分米,體積是

  ( )。

  2討論:

  (1)已知圓柱底面的半徑和高,怎樣求圓柱的體積

  V=兀r2 × h

  (2)已知圓柱底面的直徑和高,怎樣求圓柱的體積

  V=兀(d÷2)2×h

  (3)已知圓柱底面的周長和高,怎樣求圓柱的體積

  V=兀(C÷!2) ×h

  3、練習:已知半徑和高求體積,已知直徑和高求體積。

  四、小結或質(zhì)疑

  五、作業(yè)

  課后做一做第1、2、3題。

  板書設計:

  圓柱的`體積

  長方體的體積=底面積x高

  圓柱的體積=底面積x高

  V=Sh

  本節(jié)課的設計思考:

  一、讓學生在現(xiàn)實情境中體驗和理解數(shù)學

  《課程標準》指出:要創(chuàng)設與學生生活環(huán)境、知識背景密切相關的、又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中體會數(shù)學知識的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數(shù)學的力量,同時掌握必要的基礎知識與基本技能。在本節(jié)課中,我給學生創(chuàng)設了生活情景(裝在杯子中的水的體積你會求嗎?)學生聽到教師提的問題訓在身邊的生活中,頗感興趣。學生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯(lián)系。在此基礎上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,能用剛才同學們想出來的辦法嗎?這一問題情境的創(chuàng)設,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。

  二、鼓勵學生獨立思考,引導學生自主探索、合作交流

  數(shù)學學習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導的數(shù)學學習的主要方式。在本節(jié)課提示課題后,我先引導學生獨立思考要解決圓柱的體積問題,可以怎么辦?學生通過思考很快確定打算把圓柱轉化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同學們有了圓面積計算公式推導的經(jīng)驗,經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎上,小組拿出學具進行了動手操作,拼成了一個近似的長方體。同學們在操作、比較中,圍繞圓柱體和長方體之間的聯(lián)系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識——公式)。不足之處:

  在學生們動手操作時,我處理的有點急,沒有給學生充分的思考和探究的時間。在今后的教學中我要特別關注學生的學習過程,優(yōu)化課堂教學,對教材進行適當?shù)募庸ぬ幚。?shù)學知識的教學,必須抓住各部分內(nèi)容之間的內(nèi)在聯(lián)系,遵循教材特點和學生的認知規(guī)律。圓柱體積的教學,要借助于學生已經(jīng)學過的長方體體積的計算方法,通過分析、推導、演示,發(fā)現(xiàn)新知識。推導出圓柱體積的計算公式,實現(xiàn)教學目的。圓柱的體積這部分知識是學生在有了圓柱、圓和長方體的相關知識基礎上進行教學的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯(lián)系,通過想象、實際操作,從經(jīng)歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設情境,解決問題,體現(xiàn)數(shù)學知識“從生活中來到生活中去”的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探究。在新的課改形勢下,死記硬背這種膚淺的、教條的、機械的學習方式已經(jīng)完全不適應教學改革的需要,不利于學生健康的成長發(fā)展的需要,教師要重視引導學生去探索,思考,發(fā)現(xiàn)規(guī)律,培養(yǎng)學生分析問題和解決問題的能力。反思本節(jié)課的教學,覺得在練習設計上還可以下一番功夫。比如可以設計開放性習題:給一個圓柱形積木,讓學生先測量相關數(shù)據(jù)再計算體積等等。

  三、教師的語言非常貧乏

  在課堂教學中,評價語言是非常重要,它總是伴隨在教學的始終,貫穿于整個課堂,缺乏激勵的課堂就會像一潭死水,毫無生機。而精妙的評價語言就像是催化劑,能使課堂掀起層層波瀾,讓學生思維的火花時刻被點燃。教師準確,生動,親切的評價語言大大調(diào)動了學生學習的主動性和積極性,讓學生在激勵中學、自信中學、快樂中學,讓教師與學生零距離地接觸,我想學生的心理更能感覺到更大的鼓舞。

  蘇霍姆林斯基指出:“教育的藝術首先包括談話的藝術!苯處煹慕虒W效果,很大程度上取決于他的語言表達能力。數(shù)學課堂教學過程就是數(shù)學知識的傳遞過程。在整個課堂教學過程中,數(shù)學知識的傳遞、學生接受知識情況的反饋,師生間的情感交流等,都必須依靠數(shù)學語言。教師的語言表達方式和質(zhì)量直接影響著學生對知識的接受,教師語言的情感引發(fā)著學生的情感,所以說教師的語言藝術

  是課堂教學藝術的核心。我這節(jié)課最大的失誤是語言沒有發(fā)揮出調(diào)控課堂駕馭課堂的作用。

圓柱的體積教學設計10

  教學目標

  知識與能力

  1.運用遷移規(guī)律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,并理解這個過程。

  2.會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。

  3.引導學生逐步學會轉化的數(shù)學思想和數(shù)學法,培養(yǎng)學生解決實際問題的能力

  4.借助實物演示,培養(yǎng)學生抽象、概括的思維能力。

  過程與方法

  1.通過觀察、實驗、討論,學生理解所學知識。

  2.通過新舊知識的轉化貫通,學生對所學知識形成體系,領悟數(shù)學思想遷移的重要性。

  3.在講解例題與鞏固練習中,學生掌握基本的解題方法。

  情感、態(tài)度與價值觀

  1.使學生感覺到數(shù)學就在身邊,激發(fā)其學習數(shù)學的興趣。

  2.通過實驗操作及設問,培養(yǎng)其創(chuàng)造性思維和大膽的猜想。

  教學重點

  圓柱體體積的計算

  教學難點

  圓柱體體積的公式推導方法

  教學突破

  本節(jié)的內(nèi)容是這單元的重點的內(nèi)容,且與實際生活有著密切關系。在教學上對于圓柱體積的計算,首先應從圓的面積推導人手,可以借助一些教具演示及鼓勵學生實驗操作來明確。

  教 具

  圓柱的體積公式演示教具,多媒體課件

  教學過程

  一、情景引入

  1、出示圓柱形水杯。

 。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學過的方法計算出這些水的體積嗎?

 。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。

 。5)在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?

  2,復習相關知識,為新課教學作鋪墊。

 。1)什么叫物體的體積?我們學過什么立體圖形的體積計算?(學生自由回答)

 。2)出示圓柱體物品,指名學生指出各部分名稱。

  二、新課教學

  設疑揭題:

  我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。。

  1.探究推導圓柱的體積計算公式。

  課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成16份、32份……),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。依次解決上面三個問題:

  ① 把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)

  ② 拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內(nèi)容。)

  ③ 圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)

  討論并得出結果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉化成近似的長方體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的'體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設計意圖:要用這個公式計算圓柱的體積必須知道什么條件?

  填表:請同學看屏幕回答下面問題,

 、 底面積(㎡)高(m)圓柱體積(m3)

  4 3

  5 6

  9 2

 。ㄔO計意圖:設計練習能使學生達到舉一反三的效果,從而訓練學生的技能。這是第一層基本練習,通過這道題可以使學生更好的掌握本課重點,)

  例:一個圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米.它的容積約是多少立方分米?(得數(shù)保留整立方分米)

  解: d=6dm,h=7dm.r=3dm

  S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)

  V =S底h =28.26×7 =197.82198dm3 答:油桶的容積約是198立方分

 。ㄔO計意圖:使學生注意解題格式,注意體積的單位為三次方)

  三、鞏固反饋

  1.求下面圓柱體的體積。(單位:厘米)

  同學板演,其余同學在作業(yè)本上做。板演的同學講解自己的解題方法題。

  ⑤ ,教師歸納學生所用的解題方法,強調(diào)在解題的過程中格式。(設計意圖:這是第二層變式練習。是讓學生在掌握公式的基礎上理解公式,學會靈活運用公式的訓練題。通過對公式的拓展性理解,可以進一步加深學生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學生的邏輯思維能力。)

  練習:(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm.已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?

  四、拓展練習

  1.一個長方形的紙片長是6分米,寬4分米.用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由.(結果保留π)

  2.一個底面直徑是20cm的圓柱形容體里,放進一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、

  五、課堂小結

  1.談談這節(jié)課你有哪些收獲。

  2.解題時需要注意那些方面。

  六、布置作業(yè)

  1.課后練習1,2題

  2.拓展練習2題

  板書設計

  圓柱的體積

  長方體的體積=底面積x高

  圓柱——長方體 圓柱的體積=底面積x高

  V=sh

圓柱的體積教學設計11

  【教材簡析】:

  本節(jié)內(nèi)容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。

  【教學內(nèi)容】:

  p19-20頁的內(nèi)容和例題,完成“做一做”及練習三第1~4題。

  【教學目標】:

  1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公 式,能夠運用公式正確地計算圓柱的體積和容積。

  2、初步學會用轉化的數(shù)學思想和方法,解決實際問題的能力

  3、滲透轉化思想,培養(yǎng)學生的自主探索意識。

  【教學重點】:掌握圓柱體積的計算公式。

  【教學難點】:圓柱體積的計算公式的推導。

  【教學過程】:

  第一課時本冊總課時:12 課時

  一、復習

  1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)

  2、什么叫做物體的體積?你會計算下面那些圖形的體積?

  3、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。

  4、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。

  二、新課

  1、圓柱體積計算公式的推導。

 。1)用將圓轉化成長方形來求出圓的`面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的12塊,把它們拼成一個近似長方體的立體圖形——課件演示)

 。2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)

  (1)拼成近似長方體的體積與原來的圓柱體積有什么關系?(相等)

  (2)拼成的近似長方體的底面積與原來圓柱的底面積有什么關系?(相等)

  (3)拼成的近似長方體的高與原來的圓柱的高有什么關系?(相等)

 。3)通過觀察,使學生明確:

  長方體的底面積等于圓柱的底面積,

  長方體的高就是圓柱的高。

  長方體的體積=底面積×高,

  所以圓柱的體積=底面積×高,

  v = s h

  圓柱的體積計算公式是:

  v=s h

  2、課堂練習:

 。1)出示做一做:一根圓柱形鋼材,底面積是75平方厘米,長90厘米。它的體積是多少?

 。2)指名學生分別回答下面的問題:

  ① 這道題已知什么?求什么?

 、 能不能根據(jù)公式直接計算?

 、 計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)

 。3)讓學生解答和板算,最后師生共同完成.

  解:v=sh

 。75×90

  =675(立方厘米)

  答:它的體積是675立方厘米。

  3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的(v=π rh)

  4.作業(yè):

圓柱的體積教學設計12

  教材簡析:

  本節(jié)內(nèi)容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積,第十一冊圓柱的體積公開課。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。

  教學目的:

  1、運用遷移規(guī)律,引導學生借助因面積計算公式的推導方法來推導圓柱的體積計算公式,并理解這個過程。

  2.會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。

  3.引導學生逐步學會轉化的數(shù)學思想和數(shù)學法,培養(yǎng)學生解決實際問題的能力

  4.借助實物演示,培養(yǎng)學生抽象、概括的思維能力。

  教 具:圓柱的體積公式演示教具,多媒體課件

  教學過程:

  一、情景引入

  1、出示圓柱形水杯。

 。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學過的方法計算出這些水的體積嗎?

 。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。

  2、創(chuàng)設問題情景。(課件顯示)

  如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?

  今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設計意圖:問題是思維的.動力。通過創(chuàng)設問題情景,可以引導學生運用已有的生活經(jīng)驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成"任務驅動"的探究氛圍。)

  二、新課教學:

  設疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。

  1.探究推導圓柱的體積計算公式。

  課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內(nèi)容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)

  討論并得出結果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉化成近似的 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設計意圖:在新課教學中,先讓學生通過復習舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學生切實經(jīng)歷圓柱體積公式充分體現(xiàn)了教師的主導作用和學生的主體作用,小學數(shù)學教案《第十一冊圓柱的體積公開課》。這樣的教學,不僅有利于學生理解算理,掌握算法,而且在公式的推導過程中,領悟了學習方法,培養(yǎng)了學生的學習能力、抽象概括能力和邏輯思維能力)

  要用這個公式計算圓柱的體積必須知道什么條件?

  填表:請同學看屏幕回答下面問題,

  底面積(㎡)高(m)圓柱體積(m3)

  63

  0.58

  52

  (設計意圖:設計練習能使學生達到舉一反三的效果,從而訓練學生的技能。這是第一層基本練習,通過這道題可以使學生更好的掌握本課重點,夯實基礎知)

  例:一個圓柱形油桶,底面內(nèi)直徑是6分米,高是7分米.它的容積約是多少立方分米?(得數(shù)保留整立方分米)

  解: d=6dm,h=7dm.r=3dm

  S底 =πr2=3.14×32 =3.14×9 =28.26(dm2)

  V =S底h =28.26×7 =197.82198dm3 答:油桶的容積約是198立方分

 。ㄔO計意圖:使學生注意解題格式,注意體積的單位為三次方)

  三.鞏固反饋

  1.求下面圓柱體的體積。(單位:厘米)

  同學板演,其余同學在作業(yè)本上做。板演的同學講解自己的解題方法題,教師歸納學生所用的解題方法,強調(diào)在解題的過程中格式。(設計意圖:這是第二層變式練習。是讓學生在掌握公式的基礎上理解公式,學會靈活運用公式的訓練題。通過對公式的拓展性理解,可以進一步加深學生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學生的邏輯思維能力。)

  練習:(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm.已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?

 。ㄔO計意圖:這是第三層發(fā)展性練習,安排了密切聯(lián)系生活實際的習題,讓學生運用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數(shù)學就存在于自己的身邊。)

  四.拓展練習

  1.一個長方形的紙片長是6分米,寬4分米.用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由.(結果保留π)

  2.一個底面直徑是20cm的圓柱形容體里,放進一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、

 。ㄔO計意圖:安排了密切聯(lián)系生活實際的習題,讓學生運用公式解決引入環(huán)節(jié)中的兩個問題,使學生認識到數(shù)學的價值體驗到數(shù)學對于了解周圍世界和解決實際問題是非常有作用的;能使學生的思維處于積極的狀態(tài)達到培養(yǎng)學生思維的靈活性和創(chuàng)造性解決問題能力的目的。)

  五.課堂小結:

  1.談談這節(jié)課你有哪些收獲。

  2.解題時需要注意那些方面。

 。ㄔO計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結,使學生暢談收獲、發(fā)現(xiàn)不足,既能訓練學生的語言表達能力,又能培養(yǎng)學生的歸納概括能力;同時通過對本節(jié)所學知識的總結與回顧,還能使學生學到的知識系統(tǒng)化、完整化。)

  六.布置作業(yè)

  1.A冊習題2.7

  2.拓展練習2題

  教學反思:

  本節(jié)課的教學體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學生創(chuàng)設良好的學習情境;二、遵循學生的認知規(guī)律,引導學生觀察、思考、說理,調(diào)動多種感觀參與學習;三、正確處理"兩主"關系,充分發(fā)揮學生的主體作用,注意學生學習的參與過程及知識的獲取過程,學生積極性高,學習效果好。達到預期效果,不足處學生討論時間控制太少,課后作業(yè)個別學生還是對公式不會靈活應用。

圓柱的體積教學設計13

  教學目標:

  1.結合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

  2.讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學思想,體驗數(shù)學研究的方法。

  3.通過圓柱體積計算公式的推導、運用的過程,體驗數(shù)學問題的探索性和挑戰(zhàn)性,感受數(shù)學思考過程的條理性和數(shù)學結論的確定性,獲得成功的喜悅。

  教學重點:讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。

  教學難點:讓學生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學活動過程掌握圓柱體積的計算方法。

  教學方法:操作法、推理法、講授法

  教學過程

  一、復習引新。

  我們以前學過哪些立體圖形?

  生答:長方體和正方體。

  它們的體積是怎么求的?

  長方體:長×寬×高,正方體:棱長×棱長×棱長。

  二、教學例4。

  1、出示長方體和正方體。

  它們的底面積相等,高也相等。長方體和正方體的體積相等嗎?為什么?

  生答:體積=底面積×高,所以長方體和正方體的體積相等。

  2、出示圓柱。

  猜一猜,圓柱的體積與長方體和正方體的體積相等嗎?

  生猜測:相等。

  究竟如何,今天我們就一起來研究圓柱的體積。

  板書課題:圓柱的體積。

  問:剛才只是你們的'猜測,你準備怎么驗證?依據(jù)是什么?(4人小組討論)

  生:準備把圓柱轉化成我們以前學過的立體圖形,來求它的體積。

  依據(jù)是圓可以轉化成長方形計算面積。

  3、出示課件。

  回顧圓的面積計算公式是怎樣推導的。

  4、回顧了圓的面積公式推導,你有什么啟發(fā)?

  生答:把圓柱轉化成長方體計算體積。

  5、動手操作。

  請2位同學上臺用教具來演示,邊演示邊講解。

  把圓柱的底面平均分成16份,切開后把它拼成一個近似地長方體。

  多請幾組同學上臺講解,完善語言。

  提問:為什么用“近似”這個詞?

  6、教師演示課件。

  把圓柱拼成了一個近似的長方體。

  7、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?

  生答:拼成的物體越來越接近長方體。

  追問:為什么?

  生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。

  8、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。

  師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學們進行交流?

  出示討論題。

  1、拼成的長方體的底面積與原來圓柱的底面積有什么關系?為什么是相等的?

  2、拼成的長方體的高與原來圓柱的高有什么關系?為什么是相等的?

  3、拼成的長方體的體積與原來圓柱的體積有什么關系?為什么?

  板書:

  長方體體積=底面積×高

  圓柱體積=底面積×高

  9、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?

  生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。

  10、用字母如何表示。

  11、出示例4。

  現(xiàn)在你知道圓柱的體積與長方體、正方體的體積相等了嗎?

  為什么?

  生答:體積相等,都是用底面積×高。

  V=sh

  三、鞏固練習。

  1、出示練習七第一題。

  學生直接把答案填寫在表中。

  提問:你是根據(jù)什么填寫的?

  2、練一練。

  這兩題,你打算怎么計算?

  生答:不知道底面積,要先算出底面積,再乘高。

  3.14×2×5 = 62.8(平方厘米)

  3.14×(6÷2)×8 = 226.08(平方厘米)

  3、一個圓柱形狀的糧囤,從里面量得底面周長是12.56米,高是2米。它的容積是多少立方米?

  問:這道題和前面做的有什么不同?怎么計算?

  生答:這是求容積的。所以數(shù)據(jù)是從里面量的。

  4、練習七第2題。

  觀察下面的3個杯子,你能看出哪個杯子的飲料多?

  請學生猜一猜。

  請學生列出三道算式。

 。1)3.14×(8÷2)×4

  (2)3.14×(6÷2)×7

 。3)3.14×(5÷2)×10

  問:你能不求出結果直接比較出大小嗎?

  生答:第一個杯子的飲料多。

  5、練習七第三題。

  學生獨立解答。

  指名說說是怎樣算的?

  3.14×3×5×1= 141.3(千克)

  141.3千克<150千克

  答:這個保溫茶桶不能盛150千克水。

  四、總結。

  今天這節(jié)課你學到了什么?

圓柱的體積教學設計14

  教學內(nèi)容:

  課本第7頁圓柱體積

  教學目標:

  理解圓柱體積公式的推導過程,掌握圓柱體積計算公式,并能正確地計算圓柱的體積,提高知識的遷移和轉化的能力。

  教學重點

  圓柱體積計算

  教學難點:

  圓柱體積的公式推導

  教學關鍵:

  實物演示幫助

  教具準備:

  圓柱體積演示模型

  教學過程:

  一、復習鋪墊。

  1、圓柱的側面積怎么求?(圓柱的側面積=底面周長×高。)

  2、長方體的體積怎樣計算?

  學生可能會答出“長方體的體積=長×寬×高”,教師繼續(xù)引導學生想到長方體和正方體體積的統(tǒng)一公式“底面積×高”。

  板書:長方體的體積=底面積×高

  3、拿出一個圓柱形物體,指名學生指出圓拄的底面、高、側面、表面各是什么?圓柱有幾個底面?有多少條高?

  請大家想一想,在學習圓的面積時,我們是怎樣把因變成已學過的圖形再計算面積的?

  怎樣計算圓柱的體積呢?大家仔細想想看,能不能把圓柱轉化成我們已經(jīng)學過的圖形來求出它的體積?

  二、學習探索。

  這節(jié)課我們就來研究如何將圓柱轉化成我們已經(jīng)學過的圖形來求出它的體積。

  板書課題:圓柱的體積

  出示目標:1、推導2、計算

  1、圓柱體積計算公式的推導。

  教師出示一個圓柱,提問:這是不是一個圓柱?用手捂住圓柱的側面,只把其中的一個底面出示給學生看提問:“大家看,這是不是一圓?”“這是一個圓,那么要求這個圓的面積,剛才我們已經(jīng)復習了,可以用什么方法求出它的面積?”

  學生很容易想到可以將圓轉化成長方形來求出圓的面積,于是教師可以先把底面分成若干份相等的扇形(如分成16等份)。

  然后引導學生觀察:沿著圓柱底面的'扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊。教師將這分成16塊的底面出示給學生看,問:現(xiàn)在把底面切成了16份,應該怎樣把它拼成一個長方形?

  大家再看看整個圓柱,它又被拼成了什么形狀?(有點接近長方體:)

  指出:由于我們分得不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。

  把圓柱拼成近似的長方體后,體積發(fā)生變化沒有?圓柱的體積可以怎樣求?

  小結:可以通過求切拼后的長方體的體積來求圓柱的體積。

  板書:“長方體的體積=底面積×高”。

  請大家觀察教具,拼成的近似長方體的底面積與原來圓柱的哪一部分有關系?近似長方體的高與原來圓柱的哪一部分有關系?

  明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。

  板書:圓柱的體積=底面積×高

  如果用V表示圓柱的體積,S表示圓柱的底面積,h表示圓柱的高,可以得到圓柱的體積公式:V=Sh

  2、自覺書本第7、8頁。

  3、教學例3。

  出示例3。

 。1)教師指名學生分別回答下面的問題:

  ①這道題已知什么?求什么?

  ②能不能根據(jù)公式直接計算?

 、塾嬎阒耙⒁馐裁?

 。2)用投影片或小黑板出示下面幾種解答方案,讓學生判斷哪個是正確的?

  ①V=sh=40×1.8=72

  答:它的體積是72立方厘米。

  ②1.8米=180厘米

  V=sh=40×1800=72000

  答:它的體積是72000立方厘米。

  ③40平方厘米=0.4平方米

  V=sh=0.4×1.8=0.72

  答:它的體積是0.72立方米。

 、40平方厘米=0.004平方米

  V=sh=0.004×1.8=0.0072立方米

  答:它的體積是0.0072立方米。

 。3)自覺書本第8頁例3。提出質(zhì)疑。

 。4)做第9頁“試一試”。

  三、課堂小結。

  通過這節(jié)課的學習,你有什么收獲?你是怎樣聯(lián)系學過的知識進行學習的。

  四、鞏固練習。練一練1~4題。

  五、《作業(yè)本》第4頁。

圓柱的體積教學設計15

  一、教學內(nèi)容

  教材第25頁 例5、例6

  二、學習目標

  1、知識目標:理解、掌握圓柱的體積公式的推導過程,能利用圓柱的體積計算公式解決問題。

  2、能力目標:經(jīng)歷圓柱的體積公式的推導過程,學會運用轉化的思想解決一些具體問題。

  3、情感目標:感受圓柱的體積的計算與生活密不可分,激發(fā)學生學習數(shù)學的熱情。

  三、教學重難點

  1、重點:理解、掌握圓柱的體積公式的推導過程。

  2、難點:圓柱體積公式的推導過程。

  四、教學準備

  多媒體課件

  五、教學過程

  <一>創(chuàng)設情境、生成問題

  師:前面我們學過長方體和正方體的體積計算方法,你還記得是怎么計算的.嗎?(課件出示一個長方體和一個正方體)

  生答:長方體的體積用長X寬X高,正方體的體積是用棱長X棱長X棱長,或者用一個公用的底面積X高來計算

  師:這位同學回答的非常好,今天這節(jié)課我們就一起來研究圓柱體的體積計算方法。

  板書:圓柱的體積(課件)

  <二>探索交流、解決問題

  1、猜想

  師:長方體和正方體體積的大小取決于三條棱的長度,或者說取決于底面積和高,那么你認為圓柱的體積取決于什么呢?

 。ㄉ杂刹孪,并討論交流)師適當板書記錄

  剛才那幾個同學都很有想法,覺得圓柱的體積的大小可能和XXXX有關系,有人這樣說過,偉大的猜想必須要經(jīng)過驗證才能得到證明,否則的話只能是空想,接下來通過兩組圖片大家進行驗證一下

  (課件出示兩組圖片,第一組兩個圓柱等底不等高,第二組兩個圓柱等高不等底)

  師:第一組圖片中的兩個圓柱有什么特征?

  生:底面一樣,但是高度卻不一樣,體積也不一樣

  師:第二組圖片中的兩個圓柱有什么特征?

  生:這組圖片中的兩個圓柱高度一樣,但是底面卻不一樣,體積也不一樣

  師:那么通過剛才兩個同學的回答,你能得出什么結論呢?

  小結:圓柱的體積的大小取決于圓柱底面的大小和高度的大小

  師:那么你能大膽的猜想一下圓柱的體積是如何計算的嗎?

  生猜想......

  師:我們的猜想對不對,還是要用實驗去證明

  2、推導圓柱體積計算公式

  師:怎么樣進行實驗呢?結合我們以往學習幾何圖形的經(jīng)驗,小組討論交流,說說自己的想法

  生:我們是把圓柱的底面分成若干偶數(shù)分,然后用刀割開,在進行拼組,變成一個長方體,這樣通過轉化,圓柱就變成了一個近似的長方體,分的份數(shù)越多,越接近一個長方體,然后通過求長方體的體積去求圓柱的體積

  師:用心思考的同學總能找到解決問題的辦法,那么接下來同學們就利用手里的學習用具完成這個驗證實驗并完成老師給你們的實踐作業(yè)紙

 。ㄕn件出示作業(yè)紙)對應和公式推導

  選取小組的作業(yè)紙進行展示,有其他同學進行評定

  課件演示結果

  小結:通過轉化的數(shù)學思想我們將圓柱的體積轉化成已經(jīng)學過的長方體的體積,圓柱的體積計算公式是底面積乘高。

  另外,圓柱的底面積、直徑、半徑和周長四個數(shù)據(jù)中的任意一個和圓柱的高兩個數(shù)據(jù)就可以求出圓柱的體積。

  <三>鞏固應用、內(nèi)化提高

  2、

  3、下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的)

  8cm

  8cm

  498ml

  498ml

  10cm

  10cm

  <四>回顧整理、反思提升

  今天這節(jié)課你有什么新的收獲說出來和大家一起分享吧!

【圓柱的體積教學設計】相關文章:

《圓柱的體積》教學設計06-26

“圓柱的體積”教學設計06-05

圓柱的體積教學設計15篇08-19

《圓柱的體積》教學設計15篇05-16

圓柱的體積教學設計(15篇)05-13

《圓柱的體積》教學設計(精選15篇)06-03

《圓柱的體積》教學設計(15篇)06-03

《圓柱的體積》教學設計集合15篇06-05

圓柱的體積評課稿11-06