97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

三角形內(nèi)角和教學(xué)設(shè)計(jì)

時(shí)間:2023-03-09 12:54:14 設(shè)計(jì) 我要投稿

三角形內(nèi)角和教學(xué)設(shè)計(jì)通用15篇

  作為一名默默奉獻(xiàn)的教育工作者,時(shí)常需要編寫教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是實(shí)現(xiàn)教學(xué)目標(biāo)的計(jì)劃性和決策性活動(dòng)。那么問題來了,教學(xué)設(shè)計(jì)應(yīng)該怎么寫?下面是小編為大家整理的三角形內(nèi)角和教學(xué)設(shè)計(jì),僅供參考,歡迎大家閱讀。

三角形內(nèi)角和教學(xué)設(shè)計(jì)通用15篇

三角形內(nèi)角和教學(xué)設(shè)計(jì)1

  教學(xué)內(nèi)容:

  四年級(jí)下冊(cè)第78~79頁的例4和“練一練”,練習(xí)十二第10~13題。

  教學(xué)目標(biāo):

  1、使學(xué)生通過觀察、操作、比較、歸納等活動(dòng),發(fā)現(xiàn)三角形的內(nèi)角和等于1800,并能應(yīng)用這一知識(shí)求三角形中一個(gè)未知角的度數(shù)。

  2、使學(xué)生經(jīng)歷探索和發(fā)現(xiàn)三角形內(nèi)角和等于1800的過程,進(jìn)一步增強(qiáng)自主探索的意識(shí),積累類比、歸納等活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念。

  3、使學(xué)生在參與學(xué)習(xí)活動(dòng)的過程中,形成互助合作的學(xué)習(xí)氛圍,培養(yǎng)大膽猜想、敢于質(zhì)疑、勇于實(shí)踐的科學(xué)精神。

  教學(xué)重點(diǎn):

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和等于180°”這一知識(shí)的形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)難點(diǎn):

  探究和驗(yàn)證“三角形內(nèi)角和等于180°”。

  教學(xué)準(zhǔn)備:

  學(xué)生準(zhǔn)備三角板一副、量角器;教師準(zhǔn)備多媒體課件、信封里裝三角形紙片若干。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,產(chǎn)生疑問

  1、理解內(nèi)角和含義。

  2、故事激趣

  提問:三兄弟圍繞什么問題在爭吵?你有什么看法?

  二、自主學(xué)習(xí),合作探究

  1、提出猜想。

  (1)計(jì)算三角板的內(nèi)角和。

 。2)提出猜想。

  提問:通過剛才的'計(jì)算,你能得出什么結(jié)論?有同學(xué)懷疑嗎?

  指出:“三角形的內(nèi)角和等于1800”只是根據(jù)這兩個(gè)特殊三角形得到的一個(gè)猜想。

  引導(dǎo):需用更多的三角形驗(yàn)證。

  2、進(jìn)行驗(yàn)證。

 。1)驗(yàn)證教師提供的三角形。

  測(cè)量:任意三角形的內(nèi)角和。

 、傩〗M合作:用量角器量出信封里不同三角形的內(nèi)角和。

 、诮涣鳒y(cè)量結(jié)果。

  ③提問:根據(jù)測(cè)量結(jié)果,你能得出什么結(jié)論?

  拼一拼:把一個(gè)三角形的三個(gè)角拼在一起。

  ①思考:除了量,還可以用什么方法驗(yàn)證呢?

 、谕篮献鳎簢L試把三個(gè)內(nèi)角拼成一個(gè)平角。

 、鄯答伈煌钠捶。

 、芴釂枺杭热蝗切蔚娜齻(gè)內(nèi)角能拼成一個(gè)平角,你能得出什么結(jié)論?有懷疑嗎?

  解釋誤差問題。

 。2)驗(yàn)證學(xué)生自己畫的三角形。

  學(xué)生任意畫一個(gè)三角形,用自己喜歡的方法去驗(yàn)證。

  交流:自己畫的三角形驗(yàn)證出來內(nèi)角和是1800嗎?有誰驗(yàn)證

  出來不是1800的嗎?

  提問:你又能得到什么結(jié)論?還有懷疑嗎?

  3、得出結(jié)論。

  指出:三角形有無窮多,課上得到的還只是一個(gè)猜想。隨著驗(yàn)證的深入,能越來越確定這個(gè)猜想是對(duì)的。

  說明:科學(xué)家們已經(jīng)經(jīng)過嚴(yán)格的論證,證明了所有三角形的內(nèi)角和確實(shí)都是1800。

  解決爭吵:學(xué)生用三角形內(nèi)角和的知識(shí)勸解三兄弟。

  三、鞏固應(yīng)用,深刻感悟

  1、算一算:求三角形中未知角的度數(shù)。

  2、拼一拼:用兩塊相同的三角尺拼成一個(gè)三角形。

  思考:拼成的三角形內(nèi)角和是多少?

  3、畫一畫:(1)你能畫出一個(gè)有兩個(gè)銳角的三角形嗎?

 。2)你能畫出一個(gè)有兩個(gè)直角的三角形嗎?

 。3)你能畫出一個(gè)有兩個(gè)鈍角的三角形嗎?

  四、全課總結(jié),課后延伸

  1、學(xué)生自主總結(jié)一節(jié)課的收獲。

  2、介紹帕斯卡。

  3、用三角形拼成四邊形、五邊形、六邊形,引發(fā)新的問題。

三角形內(nèi)角和教學(xué)設(shè)計(jì)2

  【教學(xué)內(nèi)容】

  新課標(biāo)人教版四年級(jí)下冊(cè)第五單元《三角形》

  【教材分析】

  “三角形內(nèi)角和”這節(jié)課是新課標(biāo)人教版四年級(jí)下冊(cè)第五單元的教學(xué)內(nèi)容,是在學(xué)生學(xué)習(xí)了三角形的概念及特征之后進(jìn)行的。教材先給出了量這一思路,繼而讓學(xué)生探索驗(yàn)證三角形內(nèi)角和是180度這一觀點(diǎn)。在活動(dòng)過程中,先通過“畫一畫、量一量”,產(chǎn)生初步的發(fā)現(xiàn)和猜想,再“拼一拼、折一折”,引導(dǎo)學(xué)生對(duì)已有猜想進(jìn)行驗(yàn)證,經(jīng)歷提出猜想——進(jìn)行驗(yàn)證的的過程,滲透數(shù)學(xué)學(xué)習(xí)方法和思想。

  【學(xué)生分析】

  學(xué)生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識(shí),大多數(shù)學(xué)生已經(jīng)在課前通過不同的途徑知道“三角形的內(nèi)角和是180度”的結(jié)論,但不一定清楚道理,所以本課的設(shè)計(jì)意圖不在于了解,而在于驗(yàn)證,讓學(xué)生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點(diǎn)。四年級(jí)的學(xué)生已經(jīng)初步具備了動(dòng)手操作的意識(shí)和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運(yùn)用已有知識(shí)和經(jīng)驗(yàn),通過交流、比較、評(píng)價(jià)尋找解決問題的途徑和策略。

  【學(xué)習(xí)目標(biāo)】

  1.學(xué)生動(dòng)手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。

  2.在探究過程中,經(jīng)歷知識(shí)產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識(shí)和初步的空間思維能力。

  3.體驗(yàn)探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,發(fā)現(xiàn)問題

  1、魔術(shù)導(dǎo)入:把長方形的紙剪兩刀,怎樣拼成一個(gè)三角形?

  2、你知道三角形的那些知識(shí)?(復(fù)習(xí))

  3、小游戲:猜一猜藏在信封后面的是什么三角形。

  師:我們?cè)诓氯切蔚臅r(shí)候,看到一個(gè)直角,就能斷定它一定是直角三角形;看到一個(gè)鈍角,就能斷定他一定是鈍角三角形;但只看到一個(gè)銳角,就判斷不出來是哪種三角形。看來在一個(gè)三角形中,只能有一個(gè)直角或一個(gè)鈍角,為什么畫不出有兩個(gè)直角或兩個(gè)鈍角的三角形呢?

  三角形的這三個(gè)角究竟存在什么奧秘呢,我們一起來研究研究。

 。▌(chuàng)設(shè)的不是生活中的情境,而是數(shù)學(xué)化的情境。有的孩子認(rèn)為一個(gè)三角形中可能會(huì)有兩個(gè)鈍角,還有的提出等邊三角形中可能會(huì)有直角,這兩個(gè)問題顯現(xiàn)出學(xué)生在認(rèn)知上的矛盾,學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的'學(xué)習(xí)興趣。)

  二、引導(dǎo)探究,解決問題

  1.介紹內(nèi)角、內(nèi)角和

  師:我們現(xiàn)在研究三角形的三個(gè)角,都是它的內(nèi)角,以后到了初中,還會(huì)接觸三角形的外角?蠢蠋熓掷锏娜切危P(guān)于它的三個(gè)內(nèi)角,除了我們已經(jīng)掌握的知識(shí)外,你還知道哪方面的知識(shí)?誰能說一說三角形的內(nèi)角和指的是什么?

  已經(jīng)知道三角形的內(nèi)角和是多少的同學(xué),可以把它寫在本上。不知道的同學(xué)想一想,計(jì)量內(nèi)角和的單位是度,可以估計(jì)一下,各種各樣的三角形的內(nèi)角和是不是一個(gè)固定的數(shù),有可能會(huì)是多少度,把你的猜想也寫在本上。

  我們這節(jié)課就來一起探究用哪些方法能知道三角形的內(nèi)角和。

  2.確定研究范圍(預(yù)設(shè)約3-5分)

  師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究黑板上這一個(gè)行不行?那就隨便畫,挨個(gè)研究吧。(學(xué)生反對(duì))

  請(qǐng)你想個(gè)辦法吧!

 。ㄍㄟ^引導(dǎo)學(xué)生分析,“研究哪幾類三角形,就能代表所有的三角形”這個(gè)問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學(xué)思想)

  3.動(dòng)手操作實(shí)踐(預(yù)設(shè)約8-10分)

  同桌組成學(xué)習(xí)小組,拿出課前制作的各種各樣的三角形,先找到三個(gè)內(nèi)角,把每個(gè)角標(biāo)上序號(hào)。老師提出要求:先試著研究自己的三角形,然后再共同研究小組里其他同學(xué)的三角形,看看各種三角形內(nèi)角和是不是一樣的。(學(xué)生動(dòng)手操作試驗(yàn),在小組中討論問題)

  (為了滿足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀能動(dòng)性,我在設(shè)計(jì)學(xué)具的時(shí)候,想了幾個(gè)不同的方案,最后決定課前讓學(xué)生在學(xué)習(xí)小組里分工合作制作各種不同的三角形,課上就讓學(xué)生就用自己制作的三角形,通過獨(dú)立探究和組內(nèi)交流,實(shí)現(xiàn)對(duì)多種方法的體驗(yàn)和感悟。)

  4.匯報(bào)交流(預(yù)設(shè)約15-20分)

 。1)測(cè)量的方法

  學(xué)生匯報(bào)量的方法,師請(qǐng)同學(xué)評(píng)價(jià)這種方法。

  師小結(jié):直接量的方法挺好,雖然測(cè)量有誤差,不準(zhǔn),但我們能知道,三角形的內(nèi)角和只能在180°左右,究竟是不是一定就是180度呢,誰還有別的方法?

 。2)剪拼的方法

  學(xué)生匯報(bào)后師小結(jié):能想到這個(gè)方法不簡單,拼成的看起來像平角,到底是不是平角呢,我們一起來試試看。(教師和學(xué)生剪一剪、拼一拼)

  師:把三角形的三個(gè)內(nèi)角湊到了一起,拼成了一個(gè)大角,角的兩條邊是不是在一條直線上呢?看起來挺象的,但在操作的過程中難免會(huì)產(chǎn)生誤差,有時(shí)會(huì)差一點(diǎn)點(diǎn),誰還有別的方法確定三角形的內(nèi)角和一定是180°?

 。3)折拼的方法

  學(xué)生匯報(bào)后師小結(jié):我們要研究三角形的內(nèi)角和,實(shí)際上就是想辦法把三角形的三個(gè)內(nèi)角湊到一起,像剪和折的方法,看三個(gè)內(nèi)角拼到一起是不是180度,都是借助我們學(xué)過的平角解決的問題。

  這三種方法都不錯(cuò),在操作的過程中,有時(shí)會(huì)有誤差,不太有說服力。想一想,你還能不能借助我們學(xué)過的哪種圖形,想辦法說明三角形的內(nèi)角和一定是180度?

  (4)演繹推理的方法

 。ń柚鷮W(xué)過的長方形,把一個(gè)長方形沿對(duì)角線分成兩個(gè)三角形。)

  師:你認(rèn)為這種方法好不好?我們看看是不是這么回事。

  師小結(jié):這種方法避免了在剪拼過程中由于操作出現(xiàn)的誤差,非常準(zhǔn)確的說明了三角形的內(nèi)角和一定是180度。

 。▽W(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗(yàn),更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價(jià)值。)

  學(xué)生用的方法會(huì)非常多,怎樣對(duì)這些方法進(jìn)行引導(dǎo),是值得思考的問題。這些方法的思維水平不應(yīng)該是平行的:直接測(cè)量的方法是學(xué)生利用已有的知識(shí),測(cè)量出每個(gè)角的度數(shù),再用加法求和;拼角求和法,也就是間接剪拼和折拼這兩種方法,都是通過拼成一個(gè)特殊角,也就是平角來解決問題;而演繹推理,即把兩個(gè)完全相同的三角形合二為一,或把長方形一分為二,成為兩個(gè)三角形,這是更深層次的思考,是一種批判的思維。前兩種方法是不完全歸納法,能使我們確定研究的范圍只能是180度左右,而不可能是其他任意猜想的度數(shù)。最后一種方法具有演繹推理的色彩,把一個(gè)長方形沿對(duì)角線分成兩個(gè)完全相同的三角形后,因?yàn)閮蓚(gè)三角形的內(nèi)角和是原來長方形的四個(gè)內(nèi)角之和360度,所以一個(gè)三角形的內(nèi)角和就是360°÷2=180°,這種方法從科學(xué)證明的角度闡述了三角形的內(nèi)角和,它有嚴(yán)密性和精確性;谝陨系南敕,我覺得在課上不能停留在學(xué)生對(duì)方法的描述上,而應(yīng)引導(dǎo)學(xué)生經(jīng)歷從直觀到抽象、思維程度從低到高的過程,感悟數(shù)學(xué)的嚴(yán)謹(jǐn)性。所以在最后一個(gè)環(huán)節(jié)中,教師向全班同學(xué)推薦這種分的方法,大家一起來做一做,不要求全體都掌握,就想起到引導(dǎo)和點(diǎn)撥的作用。學(xué)生在經(jīng)歷量和拼之后,逐漸會(huì)在思維發(fā)散的過程中得到集中,集中為分的方法,最后將四邊形一分為二,五邊形一分為三,六邊形一分為四……,又會(huì)發(fā)現(xiàn)一些新的規(guī)律!

  5.驗(yàn)證猜想

  請(qǐng)學(xué)生把剛才研究的三角形舉起來,分別是銳角三角形、直角三角形、鈍角三角形,這三類的三角形內(nèi)角和都是180度,那就可以說,所有的三角形的內(nèi)角和都是180度。

  這個(gè)結(jié)論和課前剛才知道的或猜的一樣嗎?

  (在很多同學(xué)都知道三角形內(nèi)角和的情況下,要引導(dǎo)學(xué)生領(lǐng)悟有了猜測(cè)還要去驗(yàn)證,這是一種科學(xué)的研究問題的方法,是一種求實(shí)精神。)

  6.解釋課前問題

  用內(nèi)角和的知識(shí)解釋課前的問題,為什么在三角形中不能有兩個(gè)直角或鈍角。

  三、拓展應(yīng)用,深化創(chuàng)新

  1.介紹科學(xué)家帕斯卡(出示帕斯卡的資料)

  師:帕斯卡為科學(xué)作出了巨大的貢獻(xiàn),在我們以后學(xué)習(xí)的知識(shí)中,也有很多是帕斯卡發(fā)現(xiàn)和驗(yàn)證的,他12歲就發(fā)現(xiàn)三角形內(nèi)角和是180度,我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

  2.四邊形內(nèi)角和及多邊形內(nèi)角和(幻燈片)

  你打算用哪種方法知道四邊形的內(nèi)角和?

  你覺得哪種方法更好?

 。ㄔO(shè)計(jì)求四邊形的內(nèi)角和,是把這個(gè)新問題轉(zhuǎn)化歸結(jié)為求幾個(gè)三角形內(nèi)角和的問題上,滲透化歸的數(shù)學(xué)學(xué)習(xí)方法。)

  3.總結(jié)

  我們把四邊形一分為二,用三角形內(nèi)角和的知識(shí)知道了四邊形內(nèi)角和,那么五邊形、六邊形……這些多邊形的內(nèi)角和是多少度?有沒有什么規(guī)律可循,希望同學(xué)們能用學(xué)到的知識(shí)和方法去探究問題,你還會(huì)有一些精彩的發(fā)現(xiàn)。

三角形內(nèi)角和教學(xué)設(shè)計(jì)3

  課題

  三角形的內(nèi)角和

  

  教學(xué)目標(biāo)

  1.讓學(xué)生親自動(dòng)手,通過量、剪、拼等活動(dòng)發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會(huì)應(yīng)用這一知識(shí)解決生活中簡單的實(shí)際問題。

  2.在學(xué)生在動(dòng)手獲取知識(shí)的過程中,培養(yǎng)學(xué)生的實(shí)踐能力,并通過動(dòng)手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動(dòng),向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

  3.使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。

  重點(diǎn)難點(diǎn)

  重點(diǎn):讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識(shí)的形成、發(fā)展和應(yīng)用過程。

  難點(diǎn):探索、驗(yàn)證三角形內(nèi)角和是180°的過程。

  過程

  

  體驗(yàn)?zāi)繕?biāo)

  “學(xué)”與“教”

  創(chuàng)設(shè)問題情境

  課件出示:兩個(gè)三角板

  遵循由特殊到一般的規(guī)律進(jìn)行探究,引發(fā)學(xué)生的猜想后,引導(dǎo)學(xué)生探討所有的三角形的內(nèi)角和是不是也是180°。

  這是同學(xué)們熟悉的三角尺,請(qǐng)同學(xué)們說一說這兩個(gè)三角尺的三個(gè)內(nèi)角分別是多少度?

  生: 45°、90°、45°。

  生: 30°、90°、60°。

  師:仔細(xì)觀察,算一算這兩個(gè)三角形的內(nèi)角和是多少度?

  生:90°+45°+45°=180°。

  生:90°+60°+30°=180°。

  師:通過剛才的算一算,我們得到這兩個(gè)三角形的內(nèi)角和是180°,由此你想到了什么?

  生:直角三角形內(nèi)角和是180°,銳角三角形、鈍角三角形內(nèi)角和也是180°。

  師:這只是我們的一種猜想,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ?yàn)證。

  構(gòu)建

  模型

  每個(gè)組準(zhǔn)備六個(gè)三角形(銳角三角形2個(gè)、直角三角形2個(gè)、鈍角三角形2個(gè))

  課件

  學(xué)生自己剪的一個(gè)任意三角形

  大膽放手讓學(xué)生通過有層次的'自主操作活動(dòng),幫助學(xué)生結(jié)合已有的知識(shí)經(jīng)驗(yàn),探究驗(yàn)證三角形內(nèi)角和的不同方法。

  讓學(xué)生在經(jīng)歷“提出猜想—實(shí)驗(yàn)驗(yàn)證—得出結(jié)論”中感悟、體驗(yàn)知識(shí)的形成過程,將“三角形內(nèi)角和是180°”一點(diǎn)一滴,浸入學(xué)生大腦,融入已有認(rèn)知結(jié)構(gòu)。

  這一系列活動(dòng)同時(shí)還潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”的數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。

  師:之前老師為每個(gè)同學(xué)準(zhǔn)備了①-⑥六個(gè)三角形,下面請(qǐng)組長分發(fā)給每個(gè)三角形,拿到手后,先別著急,先想一想你準(zhǔn)備用什么方法去驗(yàn)證三角形內(nèi)角和?

  學(xué)生動(dòng)手操作驗(yàn)證

  師:匯報(bào)時(shí),請(qǐng)先說一說是幾號(hào)三角形?然后說一說這個(gè)三角形是什么三角形?

  學(xué)生匯報(bào):

  生1:③號(hào)三角形是直角三角形,內(nèi)角和是180°。

  生2:②號(hào)三角形是銳角三角形,內(nèi)角和是180°。

  生3:⑤號(hào)三角形是鈍角三角形,內(nèi)角和是180°。

  生4:④號(hào)三角形是直角三角形,內(nèi)角和是180°。

  生5:①號(hào)三角形是鈍角三角形,內(nèi)角和是180°。

  生6:⑥號(hào)三角形是銳角三角形,內(nèi)角和是180°。

  師:除了量的方法外,還有其他方法驗(yàn)證三角形內(nèi)角和嗎?

  生1:分別剪下三角形三個(gè)角拼成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。

  生2:分別撕下三角形三個(gè)角拼成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。

  生3:把三角形的三個(gè)角折成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。

  這些方法都驗(yàn)證了:三角形的內(nèi)角和是180°。

  師:觀察這些三角形的內(nèi)角和是多少度?這些三角形的內(nèi)角和都是180°,這是不是老師故意安排好的呢?

  師:有沒有人質(zhì)疑,用什么方法驗(yàn)證?

  生用自己剪的任意三角形再次驗(yàn)證三角形內(nèi)角和是否180°。

  生:得出內(nèi)角和還是180°。

  師:不管是老師提供的三角形,還是你們自己準(zhǔn)備的三角形,通過我們的算一算、拼一拼、折一折,都得出了三角形的內(nèi)角和是180°。

  師:我們已經(jīng)學(xué)習(xí)了三角形的分類,三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內(nèi)角和是180°,我們能把它們概括成一句話嗎?

  生:三角形的內(nèi)角和是180°。

  師:看來我們的猜想是正確的。

  師:早在20xx多年前著名數(shù)學(xué)家歐幾里得就已經(jīng)得到這個(gè)結(jié)論,到了初中以后同學(xué)們還會(huì)用更加嚴(yán)密的方法證明三角形的內(nèi)角和是180°。

  解釋

  運(yùn)用拓展

  課件

  正方形紙

  讓學(xué)生更深的對(duì)所學(xué)的新知加以鞏固,從而促使學(xué)生綜合運(yùn)用知識(shí),解決問題的能力。同時(shí)在練習(xí)中發(fā)展學(xué)生的觀察、歸納、概括能力和初步的空間想象力。

  1.∠1=40°,∠2=48°,求∠3有多少度?

  2.算出下面三角形∠3的度數(shù)。

 、拧1=42°,∠2=38°,∠3=?

 、啤1=28°,∠2=62°,∠3=?

 、恰1=80°,∠2=56°,∠3=?

  師:你是怎樣算的?這三個(gè)三角形各是什么三角形?

  提問:在一個(gè)三角形中最多有幾個(gè)鈍角?

  在一個(gè)三角形中最多有幾個(gè)直角?

  3.游戲:將準(zhǔn)備的正方形紙對(duì)折成一個(gè)三角形?

  師:這個(gè)三角形的內(nèi)角和是多少度?再對(duì)折一次,現(xiàn)在內(nèi)角和是多少度?如果繼續(xù)折下去,越折越小,三角形的內(nèi)角和會(huì)是多少度?

  說明:三角形大小變了,內(nèi)角和不變。

  4.有兩個(gè)完全一樣的三角尺拼成一個(gè)三角形,這個(gè)三角形的內(nèi)角和是多少度?

  說明:三角形形狀變了,內(nèi)角和不變。

  5.根據(jù)所學(xué)知識(shí),你能想辦法求出下面圖形的內(nèi)角和嗎?

  板書

  設(shè)計(jì)

  三角形內(nèi)角和

 、偬(hào) 鈍角三角形 內(nèi)角和180°

 、谔(hào) 銳角三角形 內(nèi)角和180°

  三角形內(nèi)角和是180°

  ③號(hào) 直角三角形 內(nèi)角和180°

 、芴(hào) 直角三角形 內(nèi)角和180°

 、萏(hào) 鈍角三角形 內(nèi)角和180°

 、尢(hào) 銳角三角形 內(nèi)角和180°

  學(xué)具教具準(zhǔn)備

  課件三角形紙片量角器正方形紙

三角形內(nèi)角和教學(xué)設(shè)計(jì)4

  教學(xué)目標(biāo):

  1、通過“算一算,拼一拼,折一折”等操作活動(dòng)探索發(fā)現(xiàn)和驗(yàn)證“三角形的內(nèi)角和是180度”的規(guī)律。

  2、在操作活動(dòng)中,培養(yǎng)學(xué)生的合作能力、動(dòng)手實(shí)踐能力,發(fā)展學(xué)生的空間觀念。并運(yùn)用新知識(shí)解決問題。

  3、使學(xué)生有科學(xué)實(shí)驗(yàn)態(tài)度,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣,體驗(yàn)數(shù)學(xué)學(xué)習(xí)成功的喜悅。

  教學(xué)重點(diǎn):

  探究發(fā)現(xiàn)和驗(yàn)證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。

  教學(xué)難點(diǎn):

  對(duì)不同探究方法的指導(dǎo)和學(xué)生對(duì)規(guī)律的靈活應(yīng)用。

  教具學(xué)具準(zhǔn)備:

  課件、學(xué)生準(zhǔn)備不同類型的三角形各一個(gè),量角器。

  教學(xué)過程:

  一、創(chuàng)設(shè)情景,引出問題

  1、課件出示三角形的爭吵畫面

  銳角三角形:我的內(nèi)角和度數(shù)最大。

  直角三角形:不對(duì),是我們直角三角形的內(nèi)角和最大。

  鈍角三角形:你們別吵了,還是鈍角三角形的內(nèi)角和最大。

  師:此時(shí),你想對(duì)它們說點(diǎn)什么呢?

  2、引出課題。

  師:看來三角形里角一定藏有一些奧秘,這節(jié)課我們就來研究有關(guān)三角形角的知識(shí)“三角形內(nèi)角和”。(板書課題)

  二、探究新知

  1、三角形的內(nèi)角、內(nèi)角和

  (1)什么是三角形內(nèi)角(課件)

  三角形里面的三個(gè)角都是三角形的內(nèi)角。為了方便研究,我們把每個(gè)三角形的3個(gè)內(nèi)角分別標(biāo)上∠1、∠2、∠3。

  (2)三角形內(nèi)角和(課件)

  師:內(nèi)角和指的是什么?

  生:三角形的三個(gè)內(nèi)角的度數(shù)的和,就是三角形的內(nèi)角和。

  2、看一看,算一算。

  師:算一算兩個(gè)三角尺的內(nèi)角和是多少度?(課件)

  學(xué)生計(jì)算

  師:是不是所有的三角形的內(nèi)角和都是180°呢?你能肯定嗎?

  (預(yù)設(shè))師:大家意見不統(tǒng)一,我們得想個(gè)辦法驗(yàn)證三角形的內(nèi)角和是多少?可以用什么方法驗(yàn)證呢?

  3、操作驗(yàn)證:小組合作。

  選1個(gè)自己喜歡的三角形,選喜歡的方法進(jìn)行驗(yàn)證。

 。ɡ蠋熓紫葹閷W(xué)生提供充分的研究材料,如三種類型的三角形若干個(gè)(小組之間的三角形大小都不相同),剪刀,量角器,白紙,直尺等,以及充裕的時(shí)間,保證學(xué)生能真正地試驗(yàn),操作和探索,通過量一量、折一折、拼一拼、畫一畫等方式去探究問題。)

  4、學(xué)生匯報(bào)。

  (1)教師:匯報(bào)的測(cè)量結(jié)果,有的是180°,有的不是180°,為什么會(huì)出現(xiàn)這種情況?

  師:有沒有別的方法驗(yàn)證。

 。2)剪拼

  a、學(xué)生上臺(tái)演示。

  B、請(qǐng)大家四人小組合作,用他的方法驗(yàn)證其它三角形。

  C、展示學(xué)生作品。

  D、師展示。

  (3)折拼

  師:有沒有別的'驗(yàn)證方法?

  師:我在電腦里收索到拼和折的方法,請(qǐng)同學(xué)們看一看他是怎么拼,怎么折的(課件演示)。

  (鼓勵(lì)學(xué)生積極開動(dòng)腦筋,從不同途徑探究解決問題的方法,同時(shí)給予學(xué)生足夠的時(shí)間和空間,不斷讓每個(gè)學(xué)生自己參與,而且注重讓學(xué)生在經(jīng)歷觀察、操作、分析、推理和想像活動(dòng)過程中解決問題,發(fā)展空間觀念和論證推理能力。)

  師:此時(shí),你想對(duì)爭論的三個(gè)三角形說些什么呢?

  5、小結(jié)。

  三角形的內(nèi)角和是180度。

  三、解決相關(guān)問題

  1、在能組成三角形的三個(gè)角后面畫“√”(課件)

  2、在一個(gè)三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。(課件)

  3、一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70°,他的頂角是多少度?(課件)

  四、練習(xí)鞏固

  1、看圖,求三角形中未知角的度數(shù)。(課件)

  2、求三角形各個(gè)角的度數(shù)。(課件)

  五、總結(jié)。

  師:這節(jié)課你有什么收獲?

  六、板書設(shè)計(jì):

  三角形的內(nèi)角和是180°

三角形內(nèi)角和教學(xué)設(shè)計(jì)5

  教學(xué)目標(biāo)

  通過猜想、驗(yàn)證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的過程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計(jì)算多邊形內(nèi)角和的公式。

  教學(xué)重難點(diǎn)

  三角形的內(nèi)角和

  課前準(zhǔn)備

  電腦課件、學(xué)具卡片

  教學(xué)活動(dòng)

  一、計(jì)算三角尺三個(gè)內(nèi)角的和。

  出示三角尺中的一個(gè),提問:誰來說說三角尺上的.三個(gè)角分別是多少度?

  引導(dǎo)學(xué)生說出90度、60度、30度。

  出示另一個(gè)三角尺,引導(dǎo)學(xué)生分別說出三個(gè)角的度數(shù):90度、45度、45度。

  提問:請(qǐng)同學(xué)們?nèi)芜x一個(gè)三角尺,算出他們?nèi)齻(gè)角一共多少度?

  學(xué)生計(jì)算后指名回答。

  師:三角尺三個(gè)角的和是180度。

  二、自主探索,解決問題

  提問:是不是任一個(gè)三角形三個(gè)角的和都是180度呢?請(qǐng)同學(xué)們?cè)谧詡浔旧?/p>

  任畫一個(gè)三角形,量出它們?nèi)齻(gè)角分別是多少度,再求出它們的和,然后小組內(nèi)交流。

  學(xué)生小組活動(dòng),教師了解學(xué)生情況,個(gè)別同學(xué)加以輔導(dǎo)。

  全班交流:讓學(xué)生分別說出三個(gè)角的度數(shù)以及它們的和。

  提問:你發(fā)現(xiàn)了什么?

  任何一個(gè)三角形三個(gè)角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。

  三、試一試

  要求學(xué)生先計(jì)算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計(jì)算的方法。

  教師說明:即使結(jié)果不完全一樣,是因?yàn)闇y(cè)量的結(jié)果存在誤差,我們還是以

  計(jì)算的結(jié)果為準(zhǔn)。

  四、鞏固提高

  完成想想做做的題目。

  第1題

  學(xué)生獨(dú)立計(jì)算,交流算法。要求學(xué)生用量角器量出結(jié)果,和計(jì)算的結(jié)果想比較。

  第2題

  指導(dǎo)學(xué)生看圖,弄清拼成的三角形的三個(gè)內(nèi)角指的是哪三個(gè)角。計(jì)算三角形三個(gè)角的內(nèi)角和,幫助學(xué)生進(jìn)一步理解:三角形三個(gè)內(nèi)角的和是180度。

  第3題

  通過操作、計(jì)算,使學(xué)生認(rèn)識(shí)到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會(huì)變化的。

  第4、5、6題

  引導(dǎo)學(xué)生運(yùn)用三角形的。分類及三角形內(nèi)角和的有關(guān)知識(shí)解決有關(guān)問題,重點(diǎn)培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)解決問題的能力。

三角形內(nèi)角和教學(xué)設(shè)計(jì)6

  教學(xué)內(nèi)容:本節(jié)課的教學(xué)內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)四年級(jí)下冊(cè)第五單位的第四課時(shí)《三角形的內(nèi)角和》,主要內(nèi)容是:驗(yàn)證三角形的內(nèi)角和是180°等。

  教學(xué)內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個(gè)重要性質(zhì),它有助于學(xué)生理解三角形的三個(gè)內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)的基礎(chǔ)。

  教學(xué)對(duì)象分析:作為四年級(jí)的學(xué)生已有一定的生活經(jīng)驗(yàn),在平時(shí)的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識(shí)的基礎(chǔ)上和利用他們已掌握的學(xué)習(xí)方法,教師把課堂教學(xué)組織生動(dòng)、活潑,突出知識(shí)性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習(xí)。

  教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):學(xué)生通過量、剪、拼、擺等操作學(xué)具活動(dòng),找到新舊知識(shí)之間的聯(lián)系,主動(dòng)掌握三角形內(nèi)角和是180°,并運(yùn)用所學(xué)知識(shí)解決簡單的實(shí)際問題。

  2、能力目標(biāo):培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的空間想象力。

  3、情感目標(biāo):培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、探索精神和實(shí)踐能力,在學(xué)生親自動(dòng)手和歸納中,感受到理性的美。

  教學(xué)重點(diǎn):理解并掌握三角形的內(nèi)角和是180°。

  教學(xué)難點(diǎn):驗(yàn)證所有三角形的內(nèi)角之和都是180°。

  教具準(zhǔn)備:多媒體課件、各種三角形等。

  學(xué)具準(zhǔn)備:三角形、剪刀、量角器等。

  教學(xué)過程:

  一、出示課題,復(fù)習(xí)舊知

  1、認(rèn)識(shí)三角形的內(nèi)角。

  (1)復(fù)習(xí)三角形的概念。

 。ǎ玻┙榻B三角形的“內(nèi)角”。

  2、理解三角形的內(nèi)角“和”。

  【設(shè)計(jì)理念】通過復(fù)習(xí)三角形的概念的過程,不僅可以鞏固學(xué)生的舊知識(shí)而且可以為新知識(shí)教學(xué)提供知識(shí)鋪墊。

  二、動(dòng)手操作,探究新知

  1、通過預(yù)習(xí),認(rèn)識(shí)結(jié)論,提出疑問

  2、驗(yàn)證三角形的內(nèi)角和

 。1)用“量一量、算一算”的方法進(jìn)行驗(yàn)證

 、賲R報(bào)測(cè)量結(jié)果

  ②產(chǎn)生疑問:為什么結(jié)果不統(tǒng)一?

 、劢鉀Q疑問:因?yàn)榇嬖跍y(cè)量誤差。

 。2)用“剪一剪、拼一拼”的方法進(jìn)行驗(yàn)證

 、僦笇(dǎo)剪法。

  ①分別拼:銳角三角形、直角三角形、鈍角三角形。

 、垓(yàn)證得出:三角形的內(nèi)角和是180°。

 。3)用“折一折”的方法進(jìn)行驗(yàn)證

 、僦笇(dǎo)折法。

  ①分別折:銳角三角形、直角三角形、鈍角三角形。

 、墼俅悟(yàn)證得出:三角形的內(nèi)角和是180°。

  3、看書質(zhì)疑

  【設(shè)計(jì)理念】此過程采用直觀教學(xué)手段。通過讓學(xué)生動(dòng)手量、拼等直觀演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的認(rèn)識(shí)由具體到抽象的轉(zhuǎn)化。從而明確三角形的內(nèi)角和是180°。

  三、實(shí)踐應(yīng)用,解決問題:

  1、在一個(gè)三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。

  2、求出三角形各個(gè)角的'度數(shù)。(圖略)

  3、爸爸給小紅買了一個(gè)等腰三角形的風(fēng)箏。它的一個(gè)底角是

  70°,它的頂角是多少度?

  4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)

  5、數(shù)學(xué)游戲。

  【設(shè)計(jì)理念】練習(xí)設(shè)計(jì)的優(yōu)化是優(yōu)化教學(xué)過程的一個(gè)重要方向,所以在新授后的鞏固練習(xí)中注意設(shè)計(jì)層層遞進(jìn),既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。

  四、總結(jié)全課、延伸知識(shí):

  1、今天你們學(xué)到了哪些知識(shí)?是怎樣獲取這些知識(shí)的?你感覺學(xué)得怎樣?

  2、知識(shí)延伸:給學(xué)生介紹一種更科學(xué)的驗(yàn)證方法——轉(zhuǎn)化。

  【設(shè)計(jì)理念】課堂總結(jié)不僅要關(guān)注學(xué)生學(xué)會(huì)了什么,更要關(guān)注用什么方法學(xué),要有意識(shí)的促進(jìn)學(xué)生反思。

  板書設(shè)計(jì): 三角形的內(nèi)角和是180°

  方法:①量一量 拼角(略)

 、谄匆黄

 、壅垡徽

  【設(shè)計(jì)理念】此板書設(shè)計(jì)我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識(shí)的重點(diǎn)充分地展現(xiàn)在學(xué)生的眼前,起了畫龍點(diǎn)睛的作用。

三角形內(nèi)角和教學(xué)設(shè)計(jì)7

  探索三角形內(nèi)角和的度數(shù)以及已知兩個(gè)角度數(shù)求第三個(gè)角度數(shù)。

  教學(xué)目標(biāo):

  1、通過測(cè)量、撕拼、折疊等探索活動(dòng),使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

  2、已知三角形兩個(gè)角的度數(shù),會(huì)求第三個(gè)角的度數(shù)。

  3、培養(yǎng)學(xué)生動(dòng)手實(shí)踐,動(dòng)腦思考的習(xí)慣。

  教學(xué)重點(diǎn):

  了解三角形三個(gè)內(nèi)角的度數(shù)。

  教學(xué)難點(diǎn):

  理解三角形三個(gè)內(nèi)角大小的關(guān)系。

  教具學(xué)具準(zhǔn)備:

  課件三角形若干量角器剪刀。

  教材與學(xué)生

  教材創(chuàng)設(shè)了一個(gè)有趣的問題情境,通過對(duì)大小兩個(gè)三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個(gè)活動(dòng),通過學(xué)生測(cè)量,折疊,撕拼來找到答案。

  學(xué)生在已有的會(huì)用量角器來度量一個(gè)角的度數(shù)的基礎(chǔ)上,會(huì)首先想到這種方法。但測(cè)量的誤差會(huì)導(dǎo)致測(cè)量不同,因此,學(xué)生會(huì)想到采取其他更好的辦法,通過親手實(shí)踐,得出結(jié)論。

  教學(xué)過程:

  一、呈現(xiàn)真實(shí)狀態(tài)。

  師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個(gè)三角形,一個(gè)是大三角形,一個(gè)是小三角形(圖略),到底哪一個(gè)三角形的內(nèi)角和比較大呢?

  學(xué)生各抒己見。

  二、提出問題:

  師;剛才我們觀察三角形哪個(gè)內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯(cuò)下面我們來測(cè)量驗(yàn)證。

 。1)以小組為單位請(qǐng)同學(xué)們拿出量角器,量一量,算一算圖中大小兩個(gè)三角形內(nèi)角和度數(shù),并做好記錄,記錄每個(gè)內(nèi)角的度數(shù)。

  (2)組內(nèi)交流。

 。3)全班交流。由小組匯報(bào)測(cè)出結(jié)果(三角形內(nèi)角和)

 。4)師小結(jié):我們通過測(cè)量發(fā)現(xiàn),每個(gè)三角形的內(nèi)角和測(cè)出結(jié)果接近180。

  三。自主探索、研究問題、歸納總結(jié):

  師引導(dǎo)提問:三角形的內(nèi)角和會(huì)不會(huì)就是180呢?

 。ㄒ唬┙M內(nèi)探索:

 。1)以小組為單位探索更好的辦法。

 。2)以小組為單位邊展示邊匯報(bào)探索的過程與發(fā)現(xiàn)的結(jié)果。

 。ㄓ械男〗M想不出來,可以安排小組和小組之間進(jìn)行交流,目的是讓學(xué)生通過實(shí)踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)

 。3)把你沒有想到的方法動(dòng)手做一次

 。ㄊ箤W(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)

  (4)根據(jù)學(xué)生的反饋情況教師進(jìn)行操作演示。

  (二)教師演示

  撕拼法1。教師取出三角形教具,把三個(gè)角撕下來,拼在一起,如圖所示

  2.師:這三個(gè)內(nèi)角放在一起你有什么發(fā)現(xiàn)?

  生:發(fā)現(xiàn)三個(gè)內(nèi)角拼成一個(gè)平角。

  師:平角是多少度呢?說明什么?

  生:180?說明三個(gè)內(nèi)角和剛好等于180。

  師:這種方法是不是適用各種三角形呢?

  3。學(xué)生每人動(dòng)手實(shí)踐,看看是不是不同的三角形是否都有這個(gè)特點(diǎn),也能拼出一個(gè)平角呢?

  進(jìn)行實(shí)驗(yàn)后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個(gè)內(nèi)角和是180。

  折疊法:師:剛才我們通過測(cè)量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因?yàn)闇y(cè)量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個(gè)內(nèi)角剛好拼成一個(gè)平角,進(jìn)一步說明三個(gè)內(nèi)角和是180,現(xiàn)在再來演示另一種實(shí)驗(yàn),再次證明我們的發(fā)現(xiàn)。

  你們也來試一試好嗎?

  在學(xué)生完成這一實(shí)踐后肯定這一發(fā)現(xiàn)

  三角形三個(gè)內(nèi)角和等于180?

  :充分發(fā)揮了學(xué)生的主觀能動(dòng)性,讓學(xué)生大膽去思考發(fā)言,把課堂交給學(xué)生,最后老師在演示達(dá)成共識(shí),這樣學(xué)生學(xué)到知識(shí)印象頗深,也理解最為透徹,提高課堂教學(xué)的效率

  四。鞏固練習(xí),知識(shí)升華。

  1.完成課本第28頁的“試一試”第三題。

  2.想一想:鈍角三角形最多有幾個(gè)鈍角?為什么?

  銳角三角形中的兩個(gè)內(nèi)角和能小于90嗎?

  3.有一個(gè)四邊形,你能不用量角器而算出它的四個(gè)內(nèi)角和嗎?

  試一試,看誰算得快。

  師:誰來說說自己的計(jì)算過程?

  角的和叫做三角形的內(nèi)角和。(板書課題)下面請(qǐng)大家認(rèn)真觀察這兩個(gè)算式,從結(jié)果上看,你發(fā)現(xiàn)了什么?

  生:它們的內(nèi)角和都是 180 度。

  師:觀察的真仔細(xì)。c(diǎn)擊課件,出示多種多樣的三角形后提問)同學(xué)們,咱們都知道,這兩個(gè)三角形是特殊三角形,在我們的生活中還有許許多多不是這個(gè)樣子的三角形,請(qǐng)看大屏幕,這些任意三角形,它們的內(nèi)角和是不是都是 180 度呢?

 。刍卮鹂赡苡卸荩

 。ㄒ环N全部說是:)

  師:請(qǐng)問,你們是怎么想的,為什么這么認(rèn)為?

  生: ……

  師:看來,大家是通過這兩個(gè)三角形猜想的,是嗎?想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號(hào))

 。ㄒ环N有一部分同學(xué)說是,有一部分同學(xué)說不是:)

  師:看來,大家的意見不一致, 想不想驗(yàn)證一下你們的猜想,(生:想)好,咱們一起走進(jìn)三角形王國,一起去研究它們內(nèi)角和的秘密吧。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號(hào))

 。ǘ﹦(dòng)手操作,探究新知

  師:老師看你們有答案了,哪位同學(xué)愿意說一說你的奇思妙想?

  生:我準(zhǔn)備用量的方法。

  師:然后呢?

  生:然后把它們?nèi)齻(gè)內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?

  師:說的真不錯(cuò),還有沒有其它的方法?

  生:我是把三角形的三個(gè)角剪下來,拼在一起( 師鼓勵(lì): 你的想法很有創(chuàng)意, 等一會(huì)兒用你的行動(dòng)來驗(yàn)證你的猜想吧。

  生:……

 。ㄈ缟粫r(shí)想不到,師可引導(dǎo):他是把三個(gè)內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個(gè)內(nèi)角放在一起進(jìn)行觀察,看看能不能發(fā)現(xiàn)些什么呢?)

  師: 好啦, 老師相信咱們班的同學(xué)個(gè)個(gè)都是小數(shù)學(xué)家, 一定能找出更多的方法的, 請(qǐng)你們?cè)谘芯恐埃蚕窭蠋熞粯,在三個(gè)內(nèi)角上編上序號(hào),角一、角二、角三,現(xiàn)在就請(qǐng)同學(xué)們對(duì)銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進(jìn)行研究,看看它們的內(nèi)角和各有什么特點(diǎn)。咱們比一比,看一看,哪個(gè)小組的方法多,方法好!

  開始吧。▽W(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時(shí)間:5 分鐘

  師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來交流一下?

  師:請(qǐng)你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?

 。 預(yù)設(shè): 如果第一類同學(xué)說的是量的方法)

  師:你是用什么來研究的?

  生:量角器。

  師: 那請(qǐng)你說一下你度量的結(jié)果好嗎?

  ( 生匯報(bào)度量結(jié)果)

  師: 剛才有的同學(xué)測(cè)量的結(jié)果是180 度,有的同學(xué)測(cè)量的結(jié)果是179 度,有的同學(xué)測(cè)量的結(jié)果是182 度,各不相同,但是這些結(jié)果都比較接近于多少?

  生:180 度。

  師:那到底三角形的內(nèi)角和是不是180 度呢?還有哪位同學(xué)有其它的方法進(jìn)行驗(yàn)證嗎?

  生:我是先把三角形的三個(gè)角剪掉以后粘在一起,然后在量出它們?nèi)齻(gè)角組成的度數(shù)。

  師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。

  (師邊講解邊點(diǎn)擊 FLASH :把三角形按照三個(gè)內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個(gè)頭,插在角一角二的中間,這樣它們?nèi)齻(gè)內(nèi)角就形成了一個(gè)大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學(xué)生:是不是在一條直線上,那這個(gè)大角是個(gè)什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)

  師:好極了,剛才這個(gè)小組的同學(xué)用拼的方法得到XX 三角形的內(nèi)角和是180 度,你們還有別的方法嗎?

  生:我們還用了折的方法(生介紹方法)

  師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點(diǎn)擊 FLASH :先找到兩條邊的中點(diǎn),把它連起來,把角一沿著中間的這條線向?qū)厡?duì)折,再把角二向里對(duì)折,使它的頂點(diǎn)與角一對(duì)齊,最后把角三也用同樣的方法對(duì)折,這樣它們?nèi)齻(gè)內(nèi)角就形成了一個(gè)大角,這個(gè)大角是個(gè)什么角呢?)

  生:是個(gè)平角。180 度。

  師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個(gè)同學(xué)用了一種方法來進(jìn)行研究,大家想知道嗎?

  師:請(qǐng)這位同學(xué)來說給大家聽聽吧!

  生:我把兩個(gè)相同的直角三角形拼成了一個(gè)長方形,因?yàn)殚L方形里面有四個(gè)直角,所以它的內(nèi)角和是360 度,那么一個(gè)三角形的內(nèi)角和就是180 度。

  師:剛才我們用量、拼、折、推理的方法都得到了三角形的內(nèi)角和是 180 度,同學(xué)們,現(xiàn)在我們回想一下,剛才測(cè)量的不同結(jié)果是一個(gè)準(zhǔn)確數(shù)還是一個(gè)近似數(shù)?為什么會(huì)出現(xiàn)這種情況呢?

  生 1 :量的不準(zhǔn)。

  生 2 :有的量角器有誤差。

  師:對(duì),這就是測(cè)量的誤差,如果測(cè)量儀器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個(gè)三角形的內(nèi)角和也將是 180 度。

  師:同學(xué)們,我們剛才用不同的方法,不同的三角形研究了三角形的內(nèi)角和,得到了一個(gè)相同的發(fā)現(xiàn),這個(gè)發(fā)現(xiàn)就是?

  生:三角形的內(nèi)角和是180 度。(師板書)

  師:把你們偉大的發(fā)現(xiàn)讀一讀吧!

 。ㄈ┩卣箲(yīng)用,深化認(rèn)識(shí)

  師:請(qǐng)看老師手上的這兩個(gè)三角形,左邊這個(gè)內(nèi)角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

  師:現(xiàn)在老師把它們拼在一起,這個(gè)大三角形的'內(nèi)角和又是多少度呢?

 。ㄉ鸷髱熞龑(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是 180 度。)

  師:剛才我們?cè)谟懻搶W(xué)習(xí)三角形知識(shí)的時(shí)候,三角形中的兩個(gè)好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧。ǔ鍪菊n件,課件內(nèi)容:一個(gè)大一些的直角三角形說:“我的個(gè)頭比你大,我的內(nèi)角和一定比你大”。另一個(gè)稍小的銳角三角形說:“是這樣嗎”?)

  師:到底誰說的對(duì)呢?今天我們就用我們今天學(xué)到的知識(shí)來為它們解決解決吧!

  師:真不錯(cuò),你們當(dāng)了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們?cè)敢饨獯饐幔?/p>

  師:好,請(qǐng)看大屏幕!

 。ǔ鍪净A(chǔ)練習(xí))在一個(gè)三角形中角一是 140 度,角三是 25 度,求角二的度數(shù)。

  生答后,師提問:你是怎樣想的?

  生陳述后,師鼓勵(lì):說的真好!

  出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進(jìn)行練習(xí)。

 。ǔ鍪荆┬〖t的爸爸給小紅買了一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是 70 度,它的頂角是多少度?

  師:看來啊,三角形的知識(shí)在咱們生活中還有著這么廣泛的運(yùn)用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

 。A(yù)設(shè):師:根據(jù)三角形的內(nèi)角和是180 度,你能求出下面四邊形、五邊形、六邊形的內(nèi)角和嗎?

  師:太棒了,這位同學(xué)把這個(gè)四邊形分割成了二個(gè)三角形求出了它的內(nèi)角和,你能像他一樣棒求出五邊形和六邊形的內(nèi)角和嗎?

  師: 同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?

  師:嗯,真不錯(cuò), 你們知道嗎? 三角形的內(nèi)角和等于 180 度是 法國著名的數(shù)學(xué)家帕斯卡 在 1635 年他 12 歲時(shí)獨(dú)自發(fā)現(xiàn)的, 今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個(gè)“帕斯卡”!

  師:好,下課!同學(xué)們?cè)僖姡?/p>

三角形內(nèi)角和教學(xué)設(shè)計(jì)8

  一、說教材

  北師版八年級(jí)下冊(cè)第六章《證明一》,是在前面對(duì)幾何結(jié)論已經(jīng)有了一定的直觀認(rèn)識(shí)的基礎(chǔ)上編排的,而前幾冊(cè)對(duì)有關(guān)幾何結(jié)論都曾進(jìn)行過簡單的說理,本章內(nèi)容則嚴(yán)格給出這些結(jié)論的證明,并要求學(xué)生掌握證明的一般步驟及書寫表達(dá)格式。《三角形內(nèi)角和定理的證明》則是對(duì)前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ)。

  二、說目標(biāo)

  1.知識(shí)目標(biāo):掌握“三角形內(nèi)角和定理的證明”及其簡單的應(yīng)用。

  2.能力目標(biāo)培養(yǎng)學(xué)生的數(shù)學(xué)語言表達(dá)、邏輯推理、問題思考、組內(nèi)及組間交流、動(dòng)手實(shí)踐等能力。

  3.情感、態(tài)度、價(jià)值觀:

  在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生體會(huì)獲得知識(shí)的成就感及與他人合作的樂趣,以增強(qiáng)其數(shù)學(xué)學(xué)習(xí)的自信心。

  4.教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):三角形的內(nèi)角和定理的證明及其簡單應(yīng)用。

  難點(diǎn):三角形的內(nèi)角和定理的證明方法的討論。

  三、說學(xué)校及學(xué)生現(xiàn)實(shí)情況

  我校是藍(lán)田縣一所普通初中,四面非山即嶺,距藍(lán)田縣城四十里之遙。但由于國家對(duì)西部教育的大力支持,學(xué)校有遠(yuǎn)程多媒體網(wǎng)絡(luò)教室,為師生提供了良好的學(xué)習(xí)硬件環(huán)境。我校學(xué)生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級(jí)四班學(xué)生,大多家庭貧苦,所以學(xué)習(xí)認(rèn)真踏實(shí),有強(qiáng)烈的求知欲;此外,善于鉆研是他們的特點(diǎn),并且,有較強(qiáng)的合作交流意識(shí)。

  四、說教法

  根據(jù)本節(jié)課教學(xué)內(nèi)容特點(diǎn),我采用啟發(fā)、引導(dǎo)、探索相結(jié)合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習(xí)主動(dòng)性、創(chuàng)造性。

  五、說教學(xué)設(shè)計(jì)

  〈一〉、創(chuàng)設(shè)情景,直入主題

  一堂新課的引入是教師與學(xué)生活動(dòng)的開始,而一個(gè)成功的引入,可使學(xué)生破除畏難心理,對(duì)知識(shí)在短時(shí)間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學(xué)活動(dòng)就變得順理成章。我的具體做法是:簡單回憶舊知識(shí),“證明的一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學(xué)習(xí)一個(gè)熟悉的結(jié)論!是什么呢?請(qǐng)看大屏幕!”。盡量使問題簡單化,這樣更利于學(xué)生投入新課。

  〈二〉、交流對(duì)話,引導(dǎo)探索

  1、巧妙提問,合理引導(dǎo)

  證明思想的引入時(shí),問:同學(xué)們,七年級(jí)時(shí)如何得到此結(jié)論?(留一定時(shí)間讓他們討論、交流、達(dá)成共識(shí))學(xué)生回答后,我及時(shí)肯定并鼓勵(lì)后拋出問題:他們的'共同之處是什么?學(xué)生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個(gè)命題是個(gè)真命題嗎?趕快試試吧!這樣,既引導(dǎo)了證明的方向,又激發(fā)了學(xué)生的學(xué)習(xí)興趣。接下來學(xué)生做題,我巡視。同時(shí)讓一學(xué)生板演。

  2、恰當(dāng)示范,培養(yǎng)學(xué)生正確的書寫能力

  在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書寫方法。

  3、一題多解,放手讓學(xué)生走進(jìn)自主學(xué)習(xí)空間

  正因?yàn)閷W(xué)生的預(yù)習(xí),所以他們證明的方法有所局限,這時(shí),我拋出問題:再想想,還有其他方法嗎?將課堂時(shí)間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時(shí),我又走到學(xué)生中去,對(duì)有困難的學(xué)生多加關(guān)注和指導(dǎo),不放棄任何一個(gè),同時(shí),借此機(jī)會(huì)增進(jìn)教師與學(xué)困生之間的情誼,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。最后,請(qǐng)有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

  4、展示歸納,合理演繹

  利用多媒體展示三角形內(nèi)角和定理的幾種表達(dá)形式,以促其學(xué)以致用。

  5、反饋練習(xí)

  用隨堂練習(xí)來鞏固學(xué)生所學(xué)新知,另一方面進(jìn)一步提高學(xué)生的書寫能力。同時(shí),在他們作完之后,多媒體展示正確寫法,加強(qiáng)教學(xué)效果。

  〈三〉、課堂小結(jié)

  1 采用讓學(xué)生感性的談?wù)J識(shí),談收獲。設(shè)計(jì)問題:

  2(1)、本節(jié)課我們學(xué)了什么知識(shí)?

  (2)、你有什么收獲?

  目的是發(fā)揮學(xué)生主體意識(shí),培養(yǎng)其語言概括能力。

  六、說教學(xué)反思

  本節(jié)課主要是以嚴(yán)謹(jǐn)?shù)倪壿嬜C明方法,驗(yàn)證三角形內(nèi)角和等于180度。讓學(xué)生充分體會(huì)有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點(diǎn)。自主學(xué)習(xí)、合作交流是新課程理念,也是我本節(jié)課的設(shè)計(jì)意圖。從學(xué)生課堂表現(xiàn)可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。

三角形內(nèi)角和教學(xué)設(shè)計(jì)9

  教學(xué)內(nèi)容:人教版小學(xué)數(shù)學(xué)第八冊(cè)第85頁例5及”做一做”

  教學(xué)目標(biāo):

  1、讓學(xué)生親自動(dòng)手,通過量、剪、拼等活動(dòng)發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會(huì)應(yīng)用這一知識(shí)解決生活中簡單的實(shí)際問題。

  2、讓學(xué)生在動(dòng)手獲取知識(shí)的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、探索精神和實(shí)踐能力。并通過動(dòng)手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動(dòng),向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想

  3、在探索中體驗(yàn)發(fā)現(xiàn)的樂趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心、

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識(shí)的形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)難點(diǎn) :

  驗(yàn)證所有三角形的內(nèi)角之和都是180°

  教具準(zhǔn)備:多媒體課件。

  學(xué)具準(zhǔn)備:量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過程:

  一、 設(shè)疑引思

  1、 分小組分別量出直角三角形、銳角三角形、鈍角三角形的三個(gè)內(nèi)角的度數(shù)、

  2、 每小組請(qǐng)一位同學(xué)說出自已量的三角形中兩個(gè)角的度數(shù)老師迅速”猜出”第三個(gè)角的度數(shù)、

  3、 設(shè)問:老師為什么能很快”猜” 出第三個(gè)角的度數(shù)呢?

  三角形還有許多奧妙,等待我們?nèi)ヌ剿鳌?導(dǎo)入新課,板書課題>

  二、 探索交流,獲取新知

  1、 量一量:每個(gè)學(xué)生將自已剛才量出的三角形的內(nèi)角和的度數(shù)相加,初步得出”三角形的內(nèi)角和是180°”的結(jié)論、

  2、 折一折:將正方形紙沿對(duì)角線對(duì)折,使之變成兩個(gè)完全重合的三角形,發(fā)現(xiàn):一個(gè)三角形的內(nèi)角和就是正方形4個(gè)角內(nèi)角和的一半,也就是360的一半,即180度, 初步驗(yàn)證”三角形的內(nèi)角和是180°”的結(jié)論、

  3、 拼一拼:學(xué)生先動(dòng)手剪拼所準(zhǔn)備的三角形,進(jìn)一步驗(yàn)證得出”三角形的內(nèi)角和是180°”的`結(jié)論、

  4、 師利用課件演示將一個(gè)三角形的三個(gè)角拼成一個(gè)平角的過程、

  5、 驗(yàn)證:FLASH演示三種三角形割補(bǔ)過程

  發(fā)現(xiàn)1: 通過把直角三角形割補(bǔ)后,內(nèi)角∠2,∠3 組成了一個(gè)()角,等于()度,∠1等于90度。所以直角三角形的內(nèi)角和等于( )度。

  發(fā)現(xiàn)2:通過把鈍角、銳角三角形割補(bǔ)后,三角組成了一個(gè)( )角,而( )角等于( )度。所以銳角三角形和鈍角三角形的內(nèi)角和都是180度。

  6、 小結(jié):剛才能過量一量折一折拼一拼,你發(fā)現(xiàn)了什么?

  生說,師板書:三角形的內(nèi)角和———180°

  三、 應(yīng)用練習(xí),拓展提高

  1、書例5后”做一做”

  思考:為什么不能畫出一個(gè)有兩個(gè)直角的三角形?(兩個(gè)鈍角、一個(gè)直角和一個(gè)鈍角的三角形?)

  2、下面哪三個(gè)角會(huì)在同一個(gè)三角形中。

 。1)30、60、45、90

  (2)52、46、54、80

 。3)61、38、44、98

  3、走向生活:

 。1)那天,老師去買了一塊三角形的玻璃,我拿著玻璃,剛到校門,一不小心,碰在門上了,摔成這幾塊(撕),哎,只有再去買一塊,但尺寸我記不得了,該怎么辦,你們能不能幫老師想想辦法?我憑哪塊碎片能再去配一塊和原來一樣的三角形玻璃嗎?

 。ńY(jié)合學(xué)生回答進(jìn)行演示:延長兩條邊,交于一點(diǎn),形成原來的三角形。所以:兩個(gè)角確定了,三角形玻璃形狀和大小也就確定了。)

  四 作業(yè):作業(yè)本

  五 全課總結(jié)

  總結(jié):今天這節(jié)課我們研究了三角形的內(nèi)角和,你們學(xué)到了哪些知識(shí),有什么收獲?

  板書設(shè)計(jì):三角形的內(nèi)角和

  三角形的內(nèi)角和———180°

三角形內(nèi)角和教學(xué)設(shè)計(jì)10

  教材內(nèi)容:

  北師大版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材四年級(jí)下冊(cè)。

  教學(xué)目標(biāo):

  1、經(jīng)歷觀察、猜想、實(shí)驗(yàn)、驗(yàn)證等數(shù)學(xué)活動(dòng),探索并發(fā)現(xiàn)三角形的內(nèi)角和180°。在實(shí)驗(yàn)活動(dòng)中,體驗(yàn)探索的過程和方法。

  2、掌握三角形內(nèi)角和是180°這一性質(zhì),并能應(yīng)用這一性質(zhì)解決一些簡單的問題。

  3、經(jīng)歷探究過程,發(fā)展推理能力,感受數(shù)學(xué)的邏輯美。

  教學(xué)難點(diǎn)、重點(diǎn):經(jīng)歷觀察、猜想、實(shí)驗(yàn)、驗(yàn)證等數(shù)學(xué)活動(dòng),探索并發(fā)現(xiàn)三角形的內(nèi)角和規(guī)律。

  教具準(zhǔn)備:直角三角形、銳角三角形、鈍角三角形各3個(gè),大三角形、小三角形各1個(gè)。

  學(xué)具準(zhǔn)備:直角三角形、銳角三角形、鈍角三角形各3個(gè)。

  教學(xué)設(shè)計(jì)意圖:

  “三角形的內(nèi)角和180°”是三角形的一個(gè)重要性質(zhì),教材通過多種方法的操作實(shí)驗(yàn),讓學(xué)生確信這一個(gè)性質(zhì)的正確性。根據(jù)學(xué)生已有的知識(shí)經(jīng)驗(yàn)和教材的內(nèi)容特點(diǎn),本著“學(xué)生的數(shù)學(xué)學(xué)習(xí)過程是一個(gè)自主構(gòu)建自己對(duì)數(shù)學(xué)知識(shí)的理解過程”的教學(xué)理念,采用探究式教學(xué)方式,讓學(xué)生經(jīng)歷觀察、猜想、實(shí)驗(yàn)、反思等數(shù)學(xué)活動(dòng),體驗(yàn)知識(shí)的形成過程。整個(gè)教學(xué)設(shè)計(jì)力求改變學(xué)生的學(xué)習(xí)方式,突出學(xué)生的主體性。在教師的組織引導(dǎo)下,讓學(xué)生在開放的學(xué)習(xí)過程中,自始至終處于積極狀態(tài),主動(dòng)參與學(xué)習(xí)過程,自主地進(jìn)行探索與發(fā)現(xiàn),多角度和多樣化地解決問題,從而實(shí)現(xiàn)知識(shí)的自我建構(gòu),掌握科學(xué)研究的方法,形成實(shí)事求事的科學(xué)探究精神。

  教學(xué)過程:

  活動(dòng)一:設(shè)疑激趣

  師:我們已經(jīng)認(rèn)識(shí)了三角形,關(guān)于三角形你知道了什么?

  生1:三角形有3條邊、3個(gè)角。

  生2:三角形按角分可以分為銳角三角形、直角三角形、鈍角三角形;三角形按邊分可以分為等腰三角形和不等邊三角形。

  生3:每種三角形都至少有兩個(gè)銳角。

  師:三角形有3個(gè)角,這3個(gè)角又叫三角形的內(nèi)角。三角形按內(nèi)角的不同分為銳角三角形、直角三角形、鈍角三角形。

  師:能不能畫一個(gè)含有兩個(gè)直角或兩個(gè)鈍角的三角形呢?為什么?

  生1:我試著畫過,畫不出來。

  生2:因?yàn)槊總(gè)三角形至少有兩個(gè)銳角,所以不可能畫出含有兩個(gè)直角或兩個(gè)鈍角的三角形。

  生3:三角形的內(nèi)角和是180°,兩個(gè)直角的和已經(jīng)是180°,所以不可能。

  師:你能解釋一下什么是“三角形的內(nèi)角和”嗎?你是怎樣知道“三角形的內(nèi)角和是180°”的`?

  生:把三角形的三個(gè)內(nèi)角的度數(shù)相加就是三角形的內(nèi)角和。“三角形的內(nèi)角和是180°”我是從書上看到的。

  師:你驗(yàn)證過了嗎?

  生:沒有。

  師:三角形的內(nèi)角和是不是180°?咱們還沒有認(rèn)真地研究過,接下來,我們就一起來研究三角形的內(nèi)角和。

  設(shè)計(jì)意圖:“我們已經(jīng)認(rèn)識(shí)了三角形,關(guān)于三角形你知道什么?”課一開始,教師就設(shè)計(jì)了一個(gè)空間容量比較大的問題,旨在讓學(xué)生自主復(fù)習(xí)三角形的有關(guān)知識(shí),引出三角形的內(nèi)角概念。然后創(chuàng)設(shè)一個(gè)能激發(fā)學(xué)生探究欲望的問題:“能不能畫出一個(gè)含有兩個(gè)直角或兩個(gè)鈍角的三角形呢?”有的學(xué)生通過動(dòng)手畫,發(fā)現(xiàn)一個(gè)三角形中不可能有兩個(gè)直角或兩個(gè)鈍角;有的學(xué)生認(rèn)為三角形的內(nèi)角和是180°,兩個(gè)直角的和已是180°,所以不可能。這種認(rèn)識(shí)可能來自于書本,也可能來自于家長的輔導(dǎo),但學(xué)生對(duì)于“三角形的內(nèi)角和是180°”的體驗(yàn)是沒有的,學(xué)生對(duì)所學(xué)的知識(shí)僅僅還是一種機(jī)械的識(shí)記,因此“三角形的內(nèi)角和是否為180°”就成了學(xué)生急切需要探究的問題。

  活動(dòng)二:自主探究

  師:請(qǐng)同學(xué)們拿出課前準(zhǔn)備的材料,自己想辦法驗(yàn)證三角形的內(nèi)角和是不是180。?

  學(xué)生動(dòng)手操作驗(yàn)證。

  師:請(qǐng)大家靜靜地思考1分鐘,將剛才的實(shí)驗(yàn)過程在腦中梳理一下,F(xiàn)在請(qǐng)把自己的研究過程、結(jié)果跟大家交流一下。

  生1:我是用量角器測(cè)量的,我量的是直角三角形:

  90。+ 42。+47。=179。

  生2:我量的也是直角三角形:

  90。+43。+48。=181。

  生3:我量的是銳角三角形:

  32。+65。+83。=180。

  生4:我量的是鈍角三角形:

  120。+32。+30。=182。

  生5:……

  師:看到這些度量結(jié)果,你有什么想法?

  生1:為什么他們測(cè)量的結(jié)果會(huì)不相同?

  生2:也許我們測(cè)量的方法不精確。

  生3:也許我們的量角器不標(biāo)準(zhǔn)。

  生4:也可能三角形的內(nèi)角和不一定都是180°。

  師:是呀,用量角器度量容易出現(xiàn)誤差,但這些度量的結(jié)果還是比較接近的,都在180°左右。

  師:有沒有沒使用量角器來驗(yàn)證的呢?

  生:我是用三個(gè)相同的三角形來接的(如圖)!1、∠2、∠3剛好拼成一個(gè)平角,所以三角形的內(nèi)角和是180°。

  師:你怎么知道這三個(gè)角拼成的大角剛好是一個(gè)平角呢?有辦法驗(yàn)證嗎?

  生1:用量角器測(cè)量不就知道了嗎?

  生2:用三角板的兩個(gè)直角去拼來驗(yàn)證。

  生3:因?yàn)槠浇堑膬蓷l邊成一條直線,所以可用直尺來檢驗(yàn)。

  生4:再拿三個(gè)相同的三角形按上面的方法進(jìn)行拼,這樣6個(gè)相同的三角形,中間就可以拼出一個(gè)周角(如圖),周角的一半剛好是平角。

  師:通過剛才的驗(yàn)證,可以說明∠1、∠2、∠3拼成的角是平角,那么銳角三角形的三個(gè)內(nèi)角能拼成一個(gè)平角嗎?鈍角三角形呢?請(qǐng)大家試一試。師:如果現(xiàn)在只有一個(gè)三角形怎么辦?

  生:我是將銳角三角形的三個(gè)角分別撕下來,拼成一個(gè)平角,平角是180°所以銳角三角形的內(nèi)角和是180°。

  師:直角三角形、鈍角三角形行嗎?來試一試。

  生1:老師,不剪下三角形的三個(gè)內(nèi)角也可以驗(yàn)證。只要將三角形的三個(gè)內(nèi)角折拼在一起,看看是不是拼成一個(gè)平角就可以了。

  師:大家就用折拼的方法試一試。

  學(xué)生操作驗(yàn)證。

  師:剛才我們除了用量角器度量的方法,同學(xué)們還想出了其他一些方法:用三個(gè)相同的三角形拼、剪拼、折拼等方法,這些方法形式上看起來不一樣,其實(shí)有共同點(diǎn)嗎?

  生:都是將三角形的三個(gè)內(nèi)角拼在一起,組成一個(gè)平角來驗(yàn)證三角形的內(nèi)角和是不是180°。

  師:通過上面的實(shí)驗(yàn),你 可以得出什么結(jié)論?

  生:三角形的內(nèi)角和是180。

  師:是任意三角形嗎?剛才我們才驗(yàn)證了幾個(gè)三角形呀?怎么就可以說是任意三角形呢?

  生:三角形按角分只有銳角三角形、直角三角形、鈍角三角形三種,剛才我們都驗(yàn)證過了。

  師:(出示一個(gè)大三角形)它的內(nèi)角和是多少度?如果將這個(gè)三角形縮小(出示一個(gè)小三角形),它的內(nèi)角和又是多少度?為什么?

  生:三角形的三條邊縮短了,可它的三個(gè)角的大小沒變,所以它的內(nèi)角和還是180。

  師生小結(jié):三角形不論形狀、大小,它的內(nèi)角和總是180。

  設(shè)計(jì)意圖:學(xué)生明確探究主題后,教師只為學(xué)生提供探究所需的材料,而不直接給出實(shí)驗(yàn)的方法和程序,激勵(lì)學(xué)生自己想辦法實(shí)驗(yàn)驗(yàn)證,獲得結(jié)論。然后引導(dǎo)學(xué)生交流、評(píng)價(jià)、反思與提升。驗(yàn)證過程中較好地體現(xiàn)了解決同一問題思維方法,驗(yàn)證策略的多樣性。促進(jìn)了學(xué)生發(fā)散思維能力的提高,提升了思維品質(zhì)。

  活動(dòng)三:應(yīng)用拓展

  1、計(jì)算下面各個(gè)三角形中的∠B的度數(shù)。

  師:(圖2)怎樣求∠B?

  生:180。-90。-55。=35。

  師:還有不同的解法嗎?

  生:180!2-55。=35。,因?yàn)槿切蔚膬?nèi)角和是180。,其中一個(gè)直角是90。,另外兩個(gè)銳角的和剛好是90。

  師:是不是任意一個(gè)直角三角形的兩銳角和都是90。呢?能驗(yàn)證一下嗎?

  生:因?yàn)槿我馊切蔚膬?nèi)角和是180。,其中一個(gè)直角是90。,所以其他兩個(gè)銳角的和肯定是90。

  師:有沒有反對(duì)意見或表示懷疑的?從中我們可以發(fā)現(xiàn)一條什么規(guī)律?

  生:直角三角形的兩個(gè)銳角和是90。

  2、一個(gè)等腰三角形頂角是90。,兩個(gè)底角分別是多少度?

  3、等邊三角形的每個(gè)內(nèi)角是多少度?

  師:現(xiàn)在你能解決為什么一個(gè)三角形里不能有兩個(gè)直角或兩個(gè)鈍角嗎?

  生:略。

  師:通過這節(jié)課的學(xué)習(xí),你還有什么疑問或還想研究什么問題?

  生:三角形有內(nèi)角和,三角形有外角和嗎?

  師:你知道三角形的外角在哪兒嗎?三角形有外角和,它的外角和是多少度呢?有興趣的同學(xué)請(qǐng)課后研究。

  課末,教師激勵(lì)學(xué)生提出新的問題:通過這節(jié)課的學(xué)習(xí),你還有什么疑問或者還想研究什么問題?培養(yǎng)學(xué)生的問題意識(shí),同時(shí)讓學(xué)生帶著問題走出教室,拓展學(xué)生數(shù)學(xué)學(xué)習(xí)的時(shí)間和空間。

三角形內(nèi)角和教學(xué)設(shè)計(jì)11

  一、教材分析:

  《三角形的內(nèi)角和》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(數(shù)學(xué))四年級(jí)下冊(cè)第二單元認(rèn)識(shí)圖形中的一個(gè)教學(xué)資料。這部分資料是在學(xué)生學(xué)習(xí)了了角的度量,角的分類,三角形的認(rèn)識(shí),三角形的分類的基上進(jìn)行教學(xué)的。它是三角形的一個(gè)重要性質(zhì),有助于學(xué)生理解三角形的三個(gè)內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)了的基礎(chǔ)。教材透過實(shí)際操作,引導(dǎo)學(xué)生用實(shí)驗(yàn)的方法探索規(guī)律,概括出一般結(jié)論,即任意一個(gè)三角形,它的內(nèi)角和都是180度。之后說明應(yīng)用這一結(jié)論,在一個(gè)三角形中,已知兩個(gè)角的度數(shù),能夠求出第三個(gè)角的度數(shù)。教材在編寫上也深刻的體現(xiàn)出了讓學(xué)生探究的特點(diǎn),透過動(dòng)手操作、小組合作探究,發(fā)現(xiàn)三角形內(nèi)角和為180度。它的教學(xué)資料的核心思想體此刻,透過讓學(xué)生透過直觀操作,透過猜想―驗(yàn)證―結(jié)論的過程,來認(rèn)識(shí)和體驗(yàn)三角形內(nèi)角和的特點(diǎn),在小組活動(dòng)中,通量一量、拼一拼、折一折等進(jìn)行猜想―驗(yàn)證數(shù)學(xué)的思想方法。

  《三角形的內(nèi)角和》在教學(xué)中,為解決數(shù)學(xué)思維的抽象性與小學(xué)生認(rèn)知的矛盾,我為學(xué)生帶給了足夠探索的時(shí)間和空間,透過觀察、操作、分析、推理、想像等活動(dòng)來認(rèn)識(shí)圖形的特征,發(fā)展學(xué)生的空間觀念和推理潛力,為學(xué)生進(jìn)一步學(xué)習(xí)了打基礎(chǔ)。

 。1)首先透過“猜謎”即復(fù)習(xí)了了所學(xué)知識(shí),又從中引出新課,有利于激發(fā)學(xué)生求知、探索的欲望,也調(diào)動(dòng)了學(xué)生學(xué)習(xí)了的用心性。在得到,為什么同學(xué)們猜想的三角形和實(shí)際的三角形不同,提出了本節(jié)課所學(xué)重點(diǎn)知識(shí)――三角形內(nèi)角和。透過猜想三角形內(nèi)角和的度數(shù),引發(fā)出要進(jìn)行驗(yàn)證的數(shù)學(xué)思想。透過小組合作,利用不同類型的三角形進(jìn)行實(shí)驗(yàn)。因此,實(shí)驗(yàn)的對(duì)象有較大的包容性,實(shí)驗(yàn)的結(jié)論有很強(qiáng)的可靠性。學(xué)生會(huì)完全信服三角形的內(nèi)角和是180°這一普遍規(guī)律。

 。2)為了讓學(xué)生深刻地理解三角形內(nèi)角和的規(guī)律,設(shè)計(jì)了給出三角形兩個(gè)角的角度,求第三個(gè)角;兩塊同樣的三角尺拼成的一個(gè)大三角形的內(nèi)角和又是多少呢并設(shè)計(jì):拼成的是三個(gè)角都相等的三角形;拼成的是兩個(gè)角相等,且有一個(gè)角是直角的三角形;拼成的是兩個(gè)角相等,且有一個(gè)角是鈍角的三角形。遞進(jìn)的兩道題知識(shí)點(diǎn)應(yīng)用的題目,把數(shù)學(xué)知識(shí)與生活緊密聯(lián)系,培養(yǎng)了學(xué)生的求異思維,也感受到解決問題策略的多樣性。拓展練習(xí)了:大三角形,剪下一個(gè)角也是一個(gè)(小三角形),剪下的小三形的內(nèi)角和是多少度?那么剩下的圖形是多少度?還原成一個(gè)大三角形又是多少度?及五邊形、六邊形等這些多邊形的內(nèi)角和你們能求出嗎?進(jìn)一步使學(xué)生加深對(duì)概念的理解,明確三角形的內(nèi)角和是180度,這與它的大小開關(guān)無關(guān)。運(yùn)用適度的延伸,激發(fā)學(xué)生廣闊的想象空間,實(shí)踐探索的欲望,做到讓不同的學(xué)生學(xué)習(xí)了不同的數(shù)學(xué)。

  二、學(xué)生分析:

 。ㄒ唬⿲W(xué)生已有知識(shí)基礎(chǔ):(調(diào)查問卷,訪談)

  1、學(xué)生已具備了角的度量,角的分類,三角形的認(rèn)識(shí),三角形的分類等知識(shí)。

  2、明白等邊三角形的每個(gè)角是60度,所以能算出“三角形內(nèi)角和為180度!睂W(xué)生明白三角形內(nèi)角和是180度。但是不是所有的三角形都等于180度,學(xué)生還不肯定。

  3、其中明白三角形內(nèi)和是180度的學(xué)生有23人,占全班總?cè)藬?shù)的54、8%。

  由此,我把自己的學(xué)習(xí)了目標(biāo)設(shè)定為,讓學(xué)生自己動(dòng)手發(fā)現(xiàn)不同類型的三角形的內(nèi)角和都是180度這個(gè)知識(shí)點(diǎn)上。

  4、有少部分學(xué)生明白無論是大三角形還是小三角形,他們的內(nèi)角和都等于180度。

 。ǘ⿲W(xué)生已有生活經(jīng)驗(yàn)和已具備的潛力:學(xué)生具備了必須的動(dòng)手操作潛力,和小組的合作交流潛力

 。ㄈ⿲W(xué)生學(xué)習(xí)了該資料的困難:在小組合作過程中,由于中年級(jí)的孩子年齡不大,所以在動(dòng)手操作過程中有的學(xué)生動(dòng)作較慢,在小組合作談?wù)摰倪^程中,有些學(xué)習(xí)了困難的學(xué)生小組合作潛力偏弱。(課堂中觀察小組合作所得出)。

 。ㄋ模⿲W(xué)生學(xué)習(xí)了的興趣(訪談):

  1、自己動(dòng)手發(fā)現(xiàn)三角形內(nèi)角和為180度,對(duì)小組合作很感興趣。

  2、透過學(xué)習(xí)了,明白了三角形無論大小,它的內(nèi)角和都是180度,對(duì)這個(gè)知識(shí)感到搞笑。

  學(xué)習(xí)了方式和學(xué)法分析:主要是利用了小組合作學(xué)習(xí)了、伙伴交流

  三、學(xué)習(xí)了目標(biāo):

  1、讓學(xué)生探索發(fā)現(xiàn)三角形的內(nèi)角和是180°。

  2、透過動(dòng)作剪、擺、拼等活動(dòng)提高學(xué)生的動(dòng)手潛力和思維潛力,感受數(shù)學(xué)的轉(zhuǎn)化思想;

  3、培養(yǎng)學(xué)生主動(dòng)探索、動(dòng)手操作的潛力;發(fā)展學(xué)生的空間觀念和初步的邏輯思維潛力;

  過程與方法:(數(shù)學(xué)思考、解決問題)培養(yǎng)學(xué)生初步構(gòu)成驗(yàn)證結(jié)論的意識(shí)及學(xué)生之間良好的合作學(xué)習(xí)了的習(xí)了慣。理解三角形的內(nèi)角和是180°,應(yīng)用三角形內(nèi)角和的知識(shí)解決實(shí)際問題。

  4、情感態(tài)度價(jià)值觀:滲透轉(zhuǎn)化遷移思想,培養(yǎng)學(xué)生大膽質(zhì)疑的勇氣和嚴(yán)謹(jǐn)科學(xué)的精神。

  教學(xué)重點(diǎn):讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識(shí)的構(gòu)成、發(fā)展和應(yīng)用的全過程;明白三角形的內(nèi)角和是180度并且能應(yīng)用。

  教學(xué)難點(diǎn):三角形內(nèi)角和是180度的探索和驗(yàn)證。

  教學(xué)準(zhǔn)備:學(xué)具準(zhǔn)備:各種類型的三角形學(xué)具和學(xué)習(xí)了資料。

  教具準(zhǔn)備:各種類型的三角形教具、實(shí)物投影儀、FLASH動(dòng)畫課件。

  四、教學(xué)過程:

  一、創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)了興趣(6分鐘)

  1、你們喜歡玩猜謎游戲么?我那里三個(gè)三角形,(貼出圖形)

  ABC

  “你們能猜出這三個(gè)三角形分別是什么三角形么?”當(dāng)學(xué)生猜A是銳角三角形時(shí),教師拿去

  彩色紙,

  ABC

  師質(zhì)疑問:“怎樣回事?”(只看到一個(gè)銳角不能判定是銳角三角形?要三個(gè)銳角才行。)

  【“猜謎”即復(fù)習(xí)了了所學(xué)知識(shí),又從中引出新課,有利于激發(fā)學(xué)生求知、探索的欲望,也調(diào)動(dòng)了學(xué)生學(xué)習(xí)了的用心性!

  2、師:為什么看到一個(gè)直角或鈍角就能夠決定出是直角三角形或鈍角三角形,而看到一個(gè)銳角卻不能判定是銳角三角形,必須要三個(gè)銳角才能說是銳角三角形呢?(如果不能回答,請(qǐng)同學(xué)們看黑板上的這3個(gè)三角形都有什么共同點(diǎn)?任何一個(gè)三角形都有兩個(gè)銳角。因?yàn)槊恳粋(gè)三角形都有兩個(gè)銳角,所以只看到一個(gè)銳角就不能決定它必須是銳角三角形。)

  3、師:“既然每一個(gè)三角形都兩個(gè)銳角,可不能夠有兩個(gè)直角或兩個(gè)鈍角呢?”,師:下面,請(qǐng)同學(xué)們畫一個(gè)有兩個(gè)直角的三角形。

  師:你們畫成功了嗎?

  師:你們想一想,為什么你們畫不出?

  師:看來,三角形的三個(gè)內(nèi)角可能藏有必須的奧秘。這節(jié)課我們就來一齊研究三角形的內(nèi)角和。(板書:三角形的內(nèi)角和)

  二、自主探索,合作交流(20分鐘)

 。ㄒ唬┛戳诉@個(gè)課題,你想明白什么或者你有什么問題么?(什么是三角形的內(nèi)角?內(nèi)角和是什么意思?三角形的內(nèi)角和是幾度?學(xué)習(xí)了三角形的內(nèi)角和有什么作用?)

  1、理解“內(nèi)角”。(2分鐘)

  師:什么是內(nèi)角?誰想說說自己的想法?(學(xué)生說出自己的理解)

  師:三角形的每個(gè)角都是三角形的內(nèi)角(課件演示)。你明白一個(gè)三角形有幾個(gè)內(nèi)角呢?(三個(gè))

  2、理解“內(nèi)角和”。(2分鐘)

  師:那我們?cè)賮硐胍幌肴切蔚膬?nèi)角和指的是什么呢?能夠和同桌說說自己的想法。(生說:就是把三角形的三個(gè)內(nèi)角的度數(shù)加起來)為了方便,我們將三角形的每個(gè)內(nèi)角編上序號(hào)1、2、3、我們叫它∠1、∠2、∠3,這三個(gè)角的度數(shù)和,就是這個(gè)三角形的內(nèi)角和。

  【掃清學(xué)生概念上存在的障礙,為深入理解三角形內(nèi)角和打下了基礎(chǔ)】

  師:請(qǐng)同學(xué)們猜一猜,三角形的三個(gè)角加起來是多少度?(生180度),那么所有的三角形的內(nèi)角和都是180度么?(教師補(bǔ)充板書:三角形內(nèi)角和1800)(生不是很肯定),

 。ǘ┬〗M合作,探究學(xué)習(xí)了(16分鐘)

  師:老師在每個(gè)同學(xué)的桌子上都放了很多不同的三角形,還有量角器等學(xué)習(xí)了材料請(qǐng)同學(xué)們先獨(dú)立思考采用什么方法來驗(yàn)證自己的猜想,再在小組里討論,交流。

  學(xué)生交流自己的想法,動(dòng)手實(shí)踐操作,驗(yàn)證自己的猜想。

  (三)提出實(shí)驗(yàn)要求:

  1、小組合作:

  同學(xué)們能夠用什么樣的方法來證明三角形的內(nèi)角和是1800,請(qǐng)同學(xué)們?nèi)罕娦〗M合作,充分利用你們的學(xué)具進(jìn)行驗(yàn)證,比一比哪些組的方法多而且又富有新意,開始!

  2、匯報(bào)交流。

  誰愿意來給大家介紹你們小組是用什么方法來驗(yàn)證三角形的內(nèi)角和是1800的?

  生A:我們小組的方法是用量角器測(cè)量出三個(gè)內(nèi)角的度數(shù),求出和是1800。

  師:你們的方法是分別測(cè)量三個(gè)內(nèi)角的度數(shù),那你測(cè)量的三個(gè)內(nèi)角的度數(shù)分別是多少?(生匯報(bào)師板書)你覺得這個(gè)小組的方法怎樣?(抽生評(píng)價(jià))還有不同的方法嗎?

  生B:先假設(shè)是1800,測(cè)量出角1和角2的度數(shù),算出第三個(gè)角的度數(shù),再用量角器測(cè)量驗(yàn)證第三個(gè)角是否是算出的結(jié)果。(師:那你測(cè)量的兩個(gè)角分別是多少度?怎樣算出第三個(gè)角的度數(shù),和量角器測(cè)量出的結(jié)果一樣嗎?)

  師:這個(gè)小組的方法也巧妙,還有誰不同的方法?

  生C:我是用剪拼的方法,是怎樣剪拼的呢?上臺(tái)來展示給我們大家瞧一瞧(投影儀)(生:把三角形的三個(gè)角剪下來后拼成一個(gè)平角)你剪的是什么三角形?那還有直角三角形、鈍角三角形呢?請(qǐng)男同學(xué)拿出鈍角三角形,女同學(xué)拿出直角三角形,迅速剪下三個(gè)角,看能否拼成一個(gè)平角。

  能夠拼成平角嗎?那我們就說三角形的內(nèi)角和是1800,還有同學(xué)在舉手,請(qǐng)你說。

  生D:折,將三角形的三個(gè)角折成一個(gè)平角。(你是怎樣折的,快上來展示給我們大家瞧一瞧!

  師:真是個(gè)心靈手巧的孩子,讓我們把掌聲送給他!動(dòng)腦筋的同學(xué)真多,請(qǐng)你說。

  生E:我是根據(jù)長方形的內(nèi)角和是3600推理出三角形的內(nèi)角和是1800。

  師:能從不同的角度去思考問題,你真棒!

  師小結(jié):(課件演示)剛才同學(xué)們用量、折、剪、拼、計(jì)算、推理等這么多巧妙的方法得出,無論是什么樣的三角形的內(nèi)角和都是1800,(師手指課題)你們真不錯(cuò),在這句話后面加個(gè)什么號(hào)?加個(gè)感嘆號(hào)!我為你們成功的學(xué)習(xí)了表示衷心祝賀,讓我們帶著自豪的語氣大聲地讀出“三角形的內(nèi)角和是1800”。(教師相應(yīng)板書?改成。

  師:請(qǐng)同學(xué)們打開書27頁,這就是我們這天學(xué)習(xí)了的一個(gè)新知識(shí)。

  【透過小組合作中動(dòng)手操作。加深對(duì)三角形內(nèi)角和地認(rèn)識(shí),體驗(yàn)、發(fā)現(xiàn)三角形內(nèi)角和性質(zhì)的探索過程,透過同學(xué)之間的合作激發(fā)學(xué)生的學(xué)習(xí)了興趣!

  〔點(diǎn)評(píng)〕讓學(xué)生在猜測(cè)三角形的內(nèi)角和是180度之后,用自己的方法予以驗(yàn)證,是本節(jié)課最重要的環(huán)節(jié),主要有以下幾個(gè)特點(diǎn)。

 。1)、以知識(shí)為載體、過程與方法為媒介,把對(duì)學(xué)生情感態(tài)度價(jià)值觀的培養(yǎng)落實(shí)在具體的學(xué)習(xí)了活動(dòng)之中。學(xué)生對(duì)內(nèi)角和的猜測(cè)缺乏必須的科學(xué)依據(jù)。在那里,教師要求學(xué)生用自己的方法進(jìn)行驗(yàn)證,把知識(shí)的學(xué)習(xí)了與情感態(tài)度價(jià)值觀的培養(yǎng)融為一體,無疑有效地培養(yǎng)了學(xué)生科學(xué)的態(tài)度。

 。2)、知其然,還要知其所以然,讓學(xué)生完整的經(jīng)歷學(xué)習(xí)了過程。教學(xué)透過學(xué)生動(dòng)手量、折、剪、拼、計(jì)算、推理等多種方法,得出三角形的內(nèi)角和是1800,不僅僅驗(yàn)證了自己的猜想,而且也充分第證明了給片面追求過程或者片面追求結(jié)果的教學(xué)行為以正確的引領(lǐng),過程與結(jié)果是相互依靠,相互支持的整體。

  (3)、面向全體學(xué)生,把學(xué)生是學(xué)習(xí)了的主體落在實(shí)處。小組合作是課程改革所倡導(dǎo)的一種新的學(xué)習(xí)了方式,但在具體采用這種方式卻出現(xiàn)了一些偏差,往往片面追求形式,追求熱熱鬧鬧的場面,給教學(xué)造成了必須的負(fù)面影響。本節(jié)課,教師立足于學(xué)生的創(chuàng)新意識(shí)和實(shí)踐潛力的培養(yǎng),把學(xué)習(xí)了的時(shí)空還給學(xué)生,成功地開展了小組合作學(xué)習(xí)了,使學(xué)生在數(shù)學(xué)的海洋的`遨游中展開思維的翅膀,用7種方法對(duì)三角形的內(nèi)角和是180度進(jìn)行了驗(yàn)證,也有效地培養(yǎng)了學(xué)生的發(fā)散思維潛力。

  三、運(yùn)用所學(xué),解決問題(8分鐘)

  如果老師告訴你一個(gè)三角形的兩個(gè)角的度數(shù),你有本領(lǐng)說出還有一個(gè)角的度數(shù)嗎?

  1、求出下面各角的度數(shù)。(獨(dú)立做在書上。)(3分鐘)

  2、(同桌伙伴活動(dòng))剛才同學(xué)們完成得都很好,下面我們一齊做一個(gè)拼三角形的游戲。

  要求:用兩個(gè)完全一樣的三角尺(2組圖片代替)拼成一個(gè)大三角形,并說出它的內(nèi)角和是多少度?(5分鐘)

 。1)拼成的是三個(gè)角都相等的三角形。

 。2)拼成的是兩個(gè)角相等,且有一個(gè)角是直角的三角形。

 。3)拼成的是兩個(gè)角相等,且有一個(gè)角是鈍角的三角形。―

  反饋:那位同學(xué)愿意到前面來展示你的結(jié)果。

  【設(shè)計(jì)意圖:遞進(jìn)的兩道題知識(shí)點(diǎn)應(yīng)用的題目,把數(shù)學(xué)知識(shí)與生活緊密聯(lián)系,培養(yǎng)了學(xué)生的求異思維,也感受到解決問題策略的多樣性!

  四、拓展練習(xí)了。(機(jī)動(dòng))(4分鐘)

  1、那此刻同學(xué)們看我手中拿著的是一個(gè)什么圖形(師手拿三角形)剪下一個(gè)角也是一個(gè)(小三角形),剪下的小三形的內(nèi)角和是多少度?那么剩下的圖形是多少度?還原成一個(gè)大三角形又是多少度?(2分鐘)

  【設(shè)計(jì)意圖:旨在加深對(duì)概念的理解,進(jìn)一步明確三角形的內(nèi)角和是180度,這與它的大小開關(guān)無關(guān)】

  2、運(yùn)用三角形的內(nèi)角和是180度,我們得到任意一個(gè)四邊形的內(nèi)角和是多少度(360度)那么(課件出示)五邊形、六邊形等這些多邊形的內(nèi)角和你們能求出嗎?請(qǐng)同學(xué)們下去試一試!咀屛覀儙е鴨栴}走進(jìn)課堂,又帶著問題走出課堂……】(2分鐘)

  [設(shè)計(jì)意圖:適度的延伸,激發(fā)學(xué)生廣闊的想象空間,實(shí)踐探索的欲望,做到讓不同的學(xué)生學(xué)習(xí)了不同的數(shù)學(xué)。]

  五、總結(jié)(2分鐘)

  這天這節(jié)課你有什么收獲?有什么遺憾?你還想明白些什么?

  六、板書設(shè)計(jì):

  三角形內(nèi)角和等于1800!

  教學(xué)反思:三角形的內(nèi)角和原本是初中一年級(jí)的資料,新課標(biāo)把三角形的內(nèi)角和作為四年級(jí)下冊(cè)中三角形的一個(gè)重要組成部分,它是學(xué)生學(xué)習(xí)了三角形內(nèi)角關(guān)系和其它多邊形內(nèi)角和的基礎(chǔ)。很多學(xué)生已經(jīng)明白了三角形的內(nèi)角和是180度,但是為什么師80度,是不是所有的三角形內(nèi)角和都是180度,就成為了學(xué)生學(xué)習(xí)了的重點(diǎn)與難點(diǎn)。因此讓學(xué)生經(jīng)歷研究的過程,探索三角形內(nèi)角和就成了本節(jié)課的重點(diǎn)。既讓學(xué)生經(jīng)歷“再創(chuàng)造”————自己去發(fā)現(xiàn)、研究并創(chuàng)造出來。教師的任務(wù)不是把現(xiàn)成的東西灌輸給學(xué)生,而是引導(dǎo)和幫忙學(xué)生去進(jìn)行這種“再創(chuàng)造”的工作,最大限度調(diào)動(dòng)其用心性并發(fā)揮學(xué)生能動(dòng)作用,從而完成對(duì)新知識(shí)的構(gòu)建和創(chuàng)造。本節(jié)課基本到達(dá)了要求,具體表此刻以下幾個(gè)方面。

  1、不斷創(chuàng)設(shè)問題情景,激發(fā)了學(xué)生的探究興趣。

  對(duì)于小學(xué)生來說。學(xué)習(xí)了的用心性首先來源于興趣,興趣是學(xué)習(xí)了的最佳動(dòng)力。如何讓學(xué)生產(chǎn)生興趣,要不活動(dòng)本身搞笑,要不就是教師不斷創(chuàng)設(shè)問題情景,呈現(xiàn)給學(xué)生“十分性”的問題,使學(xué)生感到奇異,激發(fā)學(xué)生參與學(xué)習(xí)了活動(dòng)的欲望,并興趣盎然的投入到學(xué)習(xí)了活動(dòng)中去。本節(jié)課一開始透過一個(gè)“猜謎”的游戲讓學(xué)生感覺搞笑,之后設(shè)置了一個(gè)懸念:為什么看到一個(gè)直角或鈍角就能夠決定出是直角三角形或鈍角三角形,而看到一個(gè)銳角卻不能判定是銳角三角形?在驚奇中產(chǎn)生了強(qiáng)烈的“要討個(gè)說法”的學(xué)習(xí)了興趣。當(dāng)這個(gè)問題解決時(shí),又一個(gè)問題隨之而來“既然每一個(gè)三角形都兩個(gè)銳角,那么為什么不會(huì)有兩個(gè)直角或兩個(gè)鈍角呢?”給學(xué)生造成一種急切期盼的心理狀態(tài),具有強(qiáng)烈的誘惑力,激起學(xué)生探究和解決問題的濃厚興趣,將學(xué)生自然的引入到對(duì)新知的探究中。

  2、為學(xué)生營造了探究的情境。

  學(xué)習(xí)了知識(shí)的最佳途徑是由學(xué)生自己去發(fā)現(xiàn),因?yàn)橥高^學(xué)生自己發(fā)現(xiàn)的知識(shí),學(xué)生理解的最深刻,最容易掌握。因此,在數(shù)學(xué)教學(xué)中,教師應(yīng)帶給給學(xué)生一種自我探索、自我思考、自我創(chuàng)造、自我表現(xiàn)和自我實(shí)現(xiàn)的實(shí)踐機(jī)會(huì),使學(xué)生最大限度的投入到觀察、思考、操作、探究的活動(dòng)中。上述教學(xué)中,我在引出課題后,引導(dǎo)學(xué)生自己提出問題并理解內(nèi)角與內(nèi)角和的概念。在學(xué)生猜測(cè)的基礎(chǔ)上,再引導(dǎo)學(xué)生透過探究活動(dòng)來驗(yàn)證自己的觀點(diǎn)是否正確。當(dāng)學(xué)生有困難時(shí),教師也參與學(xué)生的研究,適當(dāng)進(jìn)行點(diǎn)撥。并充分進(jìn)行交流反饋。給學(xué)生創(chuàng)造了一個(gè)寬松和諧的探究氛圍。當(dāng)學(xué)生驗(yàn)證掌握了三角形的內(nèi)角和后,教師又及時(shí)提出:‘“你能研究出任意四邊形、五邊形、六邊形甚至一百邊形的內(nèi)角和是多少度嗎”,把課堂研究引向課外研究。

  啟示:

  為了有效地上好課,教師無疑應(yīng)當(dāng)根據(jù)教學(xué)目標(biāo)和課程資料,精心地設(shè)計(jì)教學(xué)過程。但是,這種設(shè)計(jì)不應(yīng)當(dāng)是鐵定的限制教師教學(xué)框子,課堂上的教學(xué)操作也不應(yīng)當(dāng)是“教案劇”的照本上演。教學(xué)應(yīng)對(duì)的是一個(gè)個(gè)活生生的、富有個(gè)性、具有獨(dú)特生活經(jīng)驗(yàn)的學(xué)生。課堂總是處于一種流變的狀態(tài),課堂上教學(xué)的情境無時(shí)不在變化,學(xué)生學(xué)習(xí)了的心態(tài)在變化,知識(shí)經(jīng)驗(yàn)的積累狀況也在變化,因此,我們教師在備課的過程中,要充分預(yù)計(jì)學(xué)生已有的知識(shí)水平,站在學(xué)生的角度來思考:如果自己是學(xué)生,我已懂了哪些知識(shí)?還有什么問題?教什么和怎樣教,做到以“學(xué)”定“教”。在具體實(shí)施過程中,我們更應(yīng)充分運(yùn)用自己的教育機(jī)智,仔細(xì)傾聽學(xué)生的發(fā)言,開放地吸納各種信息,善于捕捉教育契機(jī),及時(shí)調(diào)控自己的教學(xué)行為。只要堅(jiān)持做到“為學(xué)習(xí)了而設(shè)計(jì)”、“為學(xué)生的發(fā)展而教”,那么我們的課堂將會(huì)更加生機(jī)勃勃,我們的學(xué)生就會(huì)產(chǎn)生智慧和歡樂,萌發(fā)出創(chuàng)造的火花。

  附:《三角形內(nèi)內(nèi)角和》課前調(diào)查問卷

  在你認(rèn)為正確的答案后面“√”。

  1、你明白有關(guān)三角形內(nèi)角和的一些知識(shí)么?

  A、明白B、不明白

  我明白(知識(shí))

  2、三角形的內(nèi)角和是()度。

  3、所有的三角形的內(nèi)角和都是相等的么?

  A、相等B、不相等

三角形內(nèi)角和教學(xué)設(shè)計(jì)12

  一、教學(xué)目標(biāo)

  1、知識(shí)目標(biāo):通過測(cè)量、撕拼(剪拼)、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的度數(shù)和等于180°這一規(guī)律,并能實(shí)際應(yīng)用。

  2、能力目標(biāo):培養(yǎng)學(xué)生主動(dòng)探索、動(dòng)手操作的能力。使學(xué)生養(yǎng)成良好的合作習(xí)慣。

  3、情感目標(biāo):讓學(xué)生體會(huì)幾何圖形內(nèi)在的結(jié)構(gòu)美。并充分體會(huì)到學(xué)習(xí)數(shù)學(xué)的快樂。

  二、教學(xué)過程

  (一)創(chuàng)設(shè)情境,導(dǎo)入新課

  1、師:我們已經(jīng)認(rèn)識(shí)了三角形,你知道哪些關(guān)于三角形的知識(shí)?

  (學(xué)生暢所欲言。)

  2、師:我們?cè)谟懻撊切沃R(shí)的時(shí)候,三角形中的三個(gè)好朋友卻吵了起來,想知道是怎么回事嗎?讓我們一起去看看吧!

  師口述:一個(gè)大的直角三角形說:“我的個(gè)頭大,我的內(nèi)角和一定比你們大。”一個(gè)鈍角三角形說:“我有一個(gè)鈍角,我的內(nèi)角和才是最大的)一個(gè)小的銳角三角形很委屈的樣子說“是這樣嗎?”,

  3、到底誰說的對(duì)呢?今天我們就來研究有關(guān)三角形內(nèi)角和的知識(shí)。(板書課題:三角形內(nèi)角和)

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、認(rèn)識(shí)什么是三角形的內(nèi)角和。

  師:你知道什么是三角形的內(nèi)角和嗎?

  通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個(gè)內(nèi)角的度數(shù)和。

  2、探究三角形內(nèi)角和的特點(diǎn)。

 、僮寣W(xué)生想一想、說一說怎樣才能知道三角形的內(nèi)角和?

  學(xué)生會(huì)想到量一量每個(gè)三角形的內(nèi)角,再相加的方法來得到三角形的內(nèi)角和。(如果學(xué)生想到別的方法,只要合理的,教師就給予肯定,并鼓勵(lì)他們對(duì)自己想到的方法進(jìn)行)

 、谛〗M合作。

  通過小組合作后交流,匯報(bào)。(教師同時(shí)板書出幾個(gè)小組匯報(bào)的結(jié)果)讓學(xué)生們發(fā)現(xiàn)每個(gè)三角形的內(nèi)角和都在180°左右。

  引導(dǎo)學(xué)生推測(cè)出三角形的內(nèi)角和可能都是180°。

  3、驗(yàn)證推測(cè)。

  讓學(xué)生動(dòng)腦筋想一想,怎樣才能驗(yàn)證自己的推想是否正確,學(xué)生可能會(huì)想到用折拼或剪拼的方法來看一看三角形的三個(gè)角和起來是不是180°,也就是說三角形的三個(gè)角能不能拼成一個(gè)平角。

 。ㄐ〗M合作驗(yàn)證,教師參與其中。)

  4、全班交流,共同發(fā)現(xiàn)規(guī)律。

  當(dāng)學(xué)生匯報(bào)用折拼或剪拼的方法的時(shí)候,指名學(xué)生上黑板展示結(jié)果。

  學(xué)生交流、師生共同總結(jié)出三角形的內(nèi)角和等于180°。教師同時(shí)板書(三角形內(nèi)角和等于180°。)

  5、師談話:三個(gè)三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對(duì)這三個(gè)三角形說點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對(duì)得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  (三)鞏固練習(xí),拓展應(yīng)用

  根據(jù)發(fā)現(xiàn)的三角形的新知識(shí)來解決問題。

  1、完成“試一試”

  讓學(xué)生獨(dú)立完成后,集體交流。

  2、游戲:選度數(shù),組三角形。

  請(qǐng)選出三個(gè)角的度數(shù)來組成一個(gè)三角形。

  150°10°15°18°20°32°

  35°50°52°54°56°58°

  130°70°72°75°60°

  學(xué)生回答的同時(shí),教師操作課件,把學(xué)生選擇的度數(shù)拖入方框內(nèi),通過電腦計(jì)算相加是否等于180°,來驗(yàn)證學(xué)生的選擇是否正確。驗(yàn)證學(xué)生選的對(duì)了以后,再讓學(xué)生判斷選擇的度數(shù)所組成的三角形按角的大小分類,屬于哪種三角形。并說出理由。

  3、“想想做做”第1題

  生獨(dú)立完成,集體訂正,并說說解題方法。

  4、“想想做做”第2題

  提問:為什么兩個(gè)三角形拼成一個(gè)三角形后,內(nèi)角和還是180度?

  5、“想想做做”第3題

  生動(dòng)手折折看,填空。

  提問:三角形的內(nèi)角和與三角形的大小有關(guān)系嗎?三角形越大,內(nèi)角和也越大嗎?

  6、“想想做做”第5題

  生獨(dú)立完成,說說不同的.解題方法。

  7、“想想做做”第6題

  學(xué)生說說自己的想法。

  8、思考題

  教師拿一個(gè)大三角形,提問學(xué)生內(nèi)角和是多少?用剪刀剪成兩個(gè)三角形,提問學(xué)生內(nèi)角和是多少?為什么?再剪下一個(gè)小三角形,提問學(xué)生內(nèi)角和是多少?為什么?最后建成一個(gè)四邊形,提問學(xué)生內(nèi)角和是多少?你能推導(dǎo)

  出四邊形的內(nèi)角和公式嗎?

 。ㄋ模┱n堂總結(jié)

  本節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?(生自由說),同學(xué)們說得真好,我們要勇于從事實(shí)中尋找規(guī)律,再將規(guī)律運(yùn)用到實(shí)踐當(dāng)中去。

  教后反思:

  “三角形的內(nèi)角和”是小學(xué)數(shù)學(xué)教材第八冊(cè)“認(rèn)識(shí)圖形”這一單元中的一個(gè)內(nèi)容。通過鉆研教材,研究學(xué)情和學(xué)法,與同組老師交流,我將本課的教學(xué)目標(biāo)確定為:

  1、通過測(cè)量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個(gè)內(nèi)角的度數(shù)和等于180度。

  2、已知三角形兩個(gè)角的度數(shù),會(huì)求出第三個(gè)角的度數(shù)。

  本節(jié)教學(xué)是在學(xué)生在學(xué)習(xí)“認(rèn)識(shí)三角形”的基礎(chǔ)上進(jìn)行的,“三角形內(nèi)角和等于180度”這一結(jié)論學(xué)生早知曉,但為什么三角形內(nèi)角和會(huì)一樣?這也正是本節(jié)課要與學(xué)生共同研究的問題。所以我將這節(jié)課教學(xué)的重難點(diǎn)設(shè)定為:通過動(dòng)手操作驗(yàn)證三角形的內(nèi)角和是180°。教學(xué)方法主要采用了實(shí)驗(yàn)法和演示法。學(xué)生的折、拼、剪等實(shí)踐活動(dòng),讓學(xué)生找到了自己的驗(yàn)證方法,使他們體驗(yàn)了成功,也學(xué)會(huì)了學(xué)習(xí)。下面結(jié)合自己的教學(xué),談幾點(diǎn)體會(huì)。

 。ㄒ唬﹦(chuàng)設(shè)情景,激發(fā)興趣

  俗話說:“良好的開端是成功的一半”。一堂課的開頭雖然只有短短幾分鐘,但它卻往往影響一堂課的成敗。因此,教師必須根據(jù)教學(xué)內(nèi)容和學(xué)生實(shí)際,精心設(shè)計(jì)每一節(jié)課的開頭導(dǎo)語,用別出心裁的導(dǎo)語來激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生主動(dòng)地投入學(xué)習(xí)。本節(jié)課先創(chuàng)設(shè)畫角質(zhì)疑的情景,當(dāng)學(xué)生畫不出來含有兩個(gè)直角的三角形時(shí),學(xué)生想說為什么又不知怎么說,學(xué)生探究的興趣因此而油然而生。

  (二)給學(xué)生空間,讓他們自主探究

  “給學(xué)生一些權(quán)利,讓他們自己選擇;給學(xué)生一個(gè)條件,讓他們自己去鍛煉;給學(xué)生一些問題,讓他們自己去探索;給學(xué)生一片空間,讓他們自己飛翔!蔽矣洸磺暹@是誰說過的話,但它給我留下深刻的印象。它正是新課改中學(xué)生主體性的表現(xiàn),是以人為本新理念的體現(xiàn)。所以在本節(jié)課中我注重創(chuàng)設(shè)有助于學(xué)生自主探究的機(jī)會(huì),通過“想辦法驗(yàn)證三角形內(nèi)角和是180度”這一核心問題,引發(fā)學(xué)生去思考、去探究。我讓他們將課前準(zhǔn)備好的三角形拿出來進(jìn)行研究,學(xué)生通過折一折、拼一拼、剪一剪等活動(dòng)找到自己的驗(yàn)證方法。學(xué)生拿著他們手中的三角形,在講臺(tái)上講述自己的驗(yàn)證方法,雖然有的方法很不成熟,但也可以看出這個(gè)過程中,滲透了他們發(fā)現(xiàn)的樂趣。這樣,學(xué)生在經(jīng)歷“再創(chuàng)造”的過程中,完成了對(duì)新知識(shí)的構(gòu)建和創(chuàng)造。

 。ㄈ┮詫W(xué)定教,注重教學(xué)的有效性

  新課表指出:數(shù)學(xué)教學(xué)活動(dòng)必須建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上。要把學(xué)生的個(gè)人知識(shí)、直接經(jīng)驗(yàn)和現(xiàn)實(shí)世界作為數(shù)學(xué)教學(xué)的重要資源,即以學(xué)定教,注重每個(gè)教學(xué)環(huán)節(jié)的有效性。本課中當(dāng)我提出“為什么一個(gè)三角形中不能有兩個(gè)角是直角”時(shí),有學(xué)生指出如果有兩個(gè)直角,它就拼不成了一個(gè)三角形;也有學(xué)生說如果有兩個(gè)直角,它就趨向于長方形或正方形!盀槭裁磿(huì)這樣呢”?學(xué)生沉默片刻后,忽然有個(gè)學(xué)生舉手了:“因?yàn)槿切蔚膬?nèi)角和是180度,兩個(gè)直角已經(jīng)有180度了,所以不可能有兩個(gè)角是直角。”這樣的回答把本來設(shè)計(jì)的教學(xué)環(huán)節(jié)打亂了,此時(shí)我靈機(jī)把問題拋給學(xué)生,“你們理解他說的話嗎、你怎么知道內(nèi)角和是180度、誰都知道三角形的內(nèi)角和是180度”等,當(dāng)我看到大多數(shù)的已經(jīng)知道這一知識(shí)時(shí),我就把學(xué)生直接引向主題“想不想自己研究證明一下三角形的內(nèi)角和是不是180度!奔ぐl(fā)了學(xué)生探究的興趣,使學(xué)生馬上投入到探究之中。

  在練習(xí)的時(shí)候,由于形式多樣,所以學(xué)生的興趣非常高漲,效果很好。通過多邊形內(nèi)角和的思考以及驗(yàn)證,發(fā)展了學(xué)生的空間想象力,使課堂的知識(shí)得以延伸。

三角形內(nèi)角和教學(xué)設(shè)計(jì)13

  【教學(xué)資料】

  《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(人教版)》四年級(jí)下冊(cè)第五單元第85頁

  【教學(xué)目標(biāo)】

  1、透過"量一量","算一算","拼一拼","折一折"的方法,讓學(xué)生推理歸納出三角形內(nèi)角和是180°,并能應(yīng)用這一知識(shí)解決一些簡單問題。

  2、透過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實(shí)驗(yàn),滲透"轉(zhuǎn)化"的數(shù)學(xué)思想、

  3、透過數(shù)學(xué)活動(dòng)使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心、培養(yǎng)學(xué)生的創(chuàng)新意識(shí),探索精神和實(shí)踐潛力、

  【教學(xué)重難點(diǎn)】

  理解并掌握三角形的內(nèi)角和是180度

  【教具學(xué)具準(zhǔn)備】

  多媒體課件、各類三角形、長方形、正方形、量角器、剪刀、固體膠、活動(dòng)記錄表等。

  【教學(xué)流程】

 。ㄒ唬﹦(chuàng)設(shè)情境,激發(fā)興趣

  此刻正是春暖花開,萬物復(fù)蘇的季節(jié)。在這完美的日子里,我們相聚在那里,劉老師十分高興認(rèn)識(shí)大家,你看把蝴蝶也引來了。(課件)

  師:請(qǐng)大家仔細(xì)觀察,它把這條繩子圍成了什么三角形?

 。ㄕn件)

  師:請(qǐng)大家仔細(xì)想一想,這三個(gè)三角形在圍的過程中什么變了?什么沒變?

  生答

  師:這節(jié)課我們一齊來研究三角形的內(nèi)角和。(板書:三角形的內(nèi)角和)

  【評(píng)析:以問題情境為出發(fā)點(diǎn),既豐富了學(xué)生的感官認(rèn)識(shí),又激發(fā)了學(xué)生的學(xué)習(xí)了熱情!

  (二)動(dòng)手操作,探索新知

  1、揭示“內(nèi)角”和“內(nèi)角和”的概念

 。1)“內(nèi)角”的概念

 。◣熓帜靡粋(gè)三角形)這個(gè)三角形的內(nèi)角在哪?誰來指給大家看。一個(gè)三角形有幾個(gè)內(nèi)角啊?

  每人從學(xué)具筐中任選一個(gè)三角形,指出它的內(nèi)角。

 。2)“內(nèi)角和”的概念

  師:大家明白了什么是三角形的內(nèi)角,那什么叫“內(nèi)角和”呢?

  師小結(jié):三角形的內(nèi)角和就是三個(gè)內(nèi)角的度數(shù)之和。

  2、猜測(cè)內(nèi)角和

 。ǎ保⿴熌靡粋(gè)銳角三角形問:大家猜一猜這個(gè)銳角三角形的內(nèi)角和是多少度?有不同想法嗎?

 。ǎ玻┲苯侨切闻c鈍角三角形同上。

  (3)師:看來大家都認(rèn)為三角形的內(nèi)角和是180o,但這僅僅是我們的一種猜測(cè),有了猜測(cè)就能夠下結(jié)論了嗎?我們還需要進(jìn)一步的驗(yàn)證.

  3、動(dòng)手驗(yàn)證,匯報(bào)交流

 。ǎ保┙榻B學(xué)具筐

  劉老師為每個(gè)小組準(zhǔn)備了一個(gè)學(xué)具筐,里面有不同的學(xué)習(xí)了材料,或許這些材料會(huì)對(duì)你有所啟發(fā),幫忙你想出好辦法。每人此刻都認(rèn)真的想一想,你打算怎樣來驗(yàn)證三角形的內(nèi)角和不是180o呢?

  (2)生獨(dú)立思考,動(dòng)手操作

  (3)組內(nèi)交流

  經(jīng)過獨(dú)立思考和動(dòng)手操作,每人都有了自己的驗(yàn)證方法,先在小組內(nèi)交流各自的驗(yàn)證方法。

 。4)全班匯報(bào)交流

  師:來吧孩子們,該到全班交流的時(shí)候了.誰愿意先把自己的方法與大家一齊分享。

 。痢y(cè)量法

  活動(dòng)記錄表

  三角形的形狀每個(gè)內(nèi)角的度數(shù)三個(gè)內(nèi)角和

  ∠1∠2∠3

  學(xué)生匯報(bào)測(cè)量結(jié)果。

  師:剛才大家都認(rèn)為三角形的內(nèi)角和是180度,但量的結(jié)果有的是180度,有的不是180度,這是怎樣原因呢?

  生發(fā)表觀點(diǎn)

  師小結(jié):看來采用測(cè)量的方法會(huì)有誤差,學(xué)習(xí)了數(shù)學(xué)要用這種嚴(yán)謹(jǐn)?shù)膽B(tài)度來對(duì)待,咱們?cè)倏纯磩e的方法。

 。隆⑺浩捶

  請(qǐng)用撕拼方法的學(xué)生上臺(tái)展示撕拼的過程。

  師:你是怎樣想到把三角形撕下來拼成一個(gè)平角來驗(yàn)證的呢?

  師評(píng)價(jià):你把本不在一齊的三個(gè)角,透過移動(dòng)位置,把它轉(zhuǎn)化成一個(gè)平角來驗(yàn)證,還用了轉(zhuǎn)化的思想,你真了不起。

  師:透過他們?nèi)齻(gè)人的驗(yàn)證,你得到了什么結(jié)論?

 。谩⑵渌椒

  師:條條大路通羅馬,還有別的驗(yàn)證方法嗎?

  如果學(xué)生出現(xiàn)把兩個(gè)完全相同的直角三角形拼成一個(gè)長方形來驗(yàn)證。

  師追問:這種方法真的很簡單,但它只能證明哪一類的三角形呢?

  【評(píng)析:《標(biāo)準(zhǔn)》指出:“教師應(yīng)激發(fā)學(xué)生的用心性,向?qū)W生帶給充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫忙他們?cè)谧灾魈剿骱秃献鹘涣鞯倪^程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)!痹诮虒W(xué)設(shè)計(jì)中劉老師注意體現(xiàn)這一理念,允許學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)進(jìn)行猜測(cè),在猜測(cè)后先獨(dú)立思考驗(yàn)證的方法,再進(jìn)行小組交流。給學(xué)生充分的活動(dòng)時(shí)間和空間,讓學(xué)生動(dòng)手操作,使學(xué)生在量、剪、拼、折等一系列實(shí)驗(yàn)活動(dòng)中理解和掌握三角形內(nèi)角和是180°這個(gè)圖形性質(zhì)。在探索活動(dòng)中,使學(xué)生學(xué)會(huì)與他人合作,同時(shí)也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)他們主動(dòng)探索的精神,讓學(xué)生在活動(dòng)中學(xué)習(xí)了,在活動(dòng)中發(fā)展。】

  4、科學(xué)驗(yàn)證方法

  師:不同的方法,同樣的精彩,大家發(fā)現(xiàn)了嗎?無論是撕一撕、折一折、還是拼一拼,這些方法都有異曲同工之妙,那就是你們都用了轉(zhuǎn)化的策略。我發(fā)現(xiàn)你們都有數(shù)學(xué)家的頭腦,明白嗎?數(shù)學(xué)家在證明這一猜想時(shí),也用了轉(zhuǎn)化的思想,一齊來看(看課件)

  【評(píng)析:一方面使學(xué)生為自己猜想的結(jié)論能被證明而產(chǎn)生滿足感;另一方面使學(xué)生體會(huì)到數(shù)學(xué)是嚴(yán)謹(jǐn)?shù)模瑥男【途蛻?yīng)讓學(xué)生養(yǎng)成嚴(yán)謹(jǐn)、認(rèn)真、實(shí)事求是的學(xué)習(xí)了態(tài)度。】

  (三)課外拓展,積淀文化

  師:明白三角形內(nèi)角和的秘密最早是由誰發(fā)現(xiàn)的嗎?(放課件)

  師:善于數(shù)學(xué)發(fā)現(xiàn)和思考使帕斯卡走上了成功的道路。這節(jié)課才10歲的我們也用自己的智慧發(fā)現(xiàn)了帕斯卡12歲時(shí)的數(shù)學(xué)發(fā)現(xiàn),我們同樣了不起,劉老師為大家感到驕傲。

  【評(píng)析:適當(dāng)?shù)囊胝n外知識(shí),它既能夠激發(fā)學(xué)生的學(xué)習(xí)了興趣,又有機(jī)的滲透了向帕斯卡學(xué)習(xí)了,做一個(gè)善于思考、善于發(fā)現(xiàn)的孩子,對(duì)學(xué)生的情感、態(tài)度、價(jià)值觀的構(gòu)成與發(fā)展能起到了潛移默化的`作用!

  (四)應(yīng)用新知,解決問題

  明白了這個(gè)結(jié)論能夠幫忙我們解決那些問題呢?

 。、把兩個(gè)小三角形拼成一個(gè)大三角形,大三角形的內(nèi)角和是多少度?為什么?

  師:大三角形的內(nèi)角是哪些?指出來

  師:當(dāng)把兩個(gè)三角形拼在一齊時(shí),消失了兩個(gè)內(nèi)角,正好是180°,所以大三角形的內(nèi)角和還是180度,如果把三角形分成兩個(gè)小三角形呢?

  師小結(jié):三角形無論大小,內(nèi)角和都是180°。

  【評(píng)析:透過課件動(dòng)態(tài)演示兩個(gè)三角形分與合的過程,讓學(xué)生進(jìn)一步理解三角形內(nèi)角和等于180度這個(gè)結(jié)論,使學(xué)生認(rèn)識(shí)到三角形的內(nèi)角和不因三角形的大小而改變!

  2、想一想,做一做

  在一個(gè)三角形ABC中,已知A45°,B85o,求с的度數(shù)。

  在一個(gè)直角三角形中,已知с52o,求Α的度數(shù)。

  爸爸給小紅買了一個(gè)等腰三角形的風(fēng)箏。它的一個(gè)底角是70°,它的頂角是多少度?

  【評(píng)析:將三角形內(nèi)角和知識(shí)與三角形特征有機(jī)結(jié)合起來,使學(xué)生綜合運(yùn)用內(nèi)角和知識(shí)和直角三角形、等腰三角形等圖形特征求三角形內(nèi)角的度數(shù)。】

  3、思考:

  你能畫出一個(gè)有兩個(gè)直角或兩個(gè)鈍角的三角形嗎?為什么?

  【評(píng)析:將三角形內(nèi)角和知識(shí)與三角形的分類知識(shí)結(jié)合起來,引導(dǎo)學(xué)生運(yùn)用三角形內(nèi)角和的知識(shí)去解釋直角三角形、鈍角三角形中角的特征,較好地溝通了知識(shí)之間的聯(lián)系!

 。ㄎ澹┤n小結(jié),完善新知

  1、學(xué)生談收獲

  2、師小結(jié)

  這天我們收獲的不僅僅僅是知識(shí)上的,還有情感上的,思想方法上的,還認(rèn)識(shí)了一位了不起的科學(xué)家帕斯卡,因?yàn)樗暮闷媾c不滿足讓我們記住了他。相信在座的每一位只要你擁有善于發(fā)現(xiàn)的眼睛,勤于思考的大腦,勇于實(shí)踐的雙手,將來某一天你也會(huì)像他一樣偉大。

  【評(píng)析:這樣用談話的方式進(jìn)行總結(jié),不僅僅總結(jié)了所學(xué)知識(shí)技能,還體現(xiàn)了學(xué)法的指導(dǎo),增強(qiáng)了情感體驗(yàn)。】

  【總評(píng)】整節(jié)課劉老師透過巧妙的設(shè)計(jì),讓學(xué)生經(jīng)歷了觀察、發(fā)現(xiàn)、猜測(cè)、驗(yàn)證、歸納、概括等數(shù)學(xué)活動(dòng),切實(shí)體現(xiàn)了新課程的核心理念“以學(xué)生為本,以學(xué)生的發(fā)展為本”。具體體此刻以下幾個(gè)方面:

  1、精心設(shè)計(jì)學(xué)習(xí)了活動(dòng),讓每一個(gè)學(xué)生經(jīng)歷知識(shí)構(gòu)成的過程。劉老師為學(xué)生帶給了豐富的結(jié)構(gòu)化的學(xué)習(xí)了材料,有各類的三角形、相同的三角形等,促使學(xué)生人人動(dòng)手、人人思考,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上進(jìn)行合作與交流。在這一過程中發(fā)展學(xué)生的動(dòng)手操作潛力、推理歸納潛力,實(shí)現(xiàn)學(xué)生對(duì)知識(shí)的主動(dòng)建構(gòu)。

  2、立足長遠(yuǎn),注重長效,不僅僅關(guān)注知識(shí)和潛力目標(biāo)的落實(shí),更注重?cái)?shù)學(xué)思想方法的滲透。在驗(yàn)證三角形內(nèi)角和是180度的過程中,教師有意識(shí)地引導(dǎo)學(xué)生認(rèn)識(shí)到撕拼的驗(yàn)證方法其實(shí)是把三角形的內(nèi)角和轉(zhuǎn)化成了平角,使學(xué)生對(duì)“轉(zhuǎn)化”的數(shù)學(xué)思想有所感悟;在對(duì)測(cè)量的結(jié)果出現(xiàn)不同答案的交流過程中,使學(xué)生認(rèn)識(shí)到測(cè)量時(shí)會(huì)出現(xiàn)誤差,從而培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)、科學(xué)的學(xué)習(xí)了態(tài)度和探究精神。

  3、遵循教材,不唯教材。本節(jié)課上,劉老師延伸了教材,介紹了科學(xué)驗(yàn)證三角形內(nèi)角和的方法以及這一結(jié)論的發(fā)現(xiàn)者帕斯卡的故事,拓寬了學(xué)生的知識(shí)面,把學(xué)生的學(xué)習(xí)了置于更廣闊的數(shù)學(xué)文化背景中,激起了學(xué)生對(duì)數(shù)學(xué)的強(qiáng)烈興趣,激發(fā)了學(xué)生積極向上的學(xué)習(xí)了情感。

  整節(jié)課的學(xué)習(xí)了資料,突出了數(shù)學(xué)學(xué)科的實(shí)質(zhì),抓住了數(shù)學(xué)的本質(zhì),使學(xué)生在動(dòng)手“做”數(shù)學(xué)的過程中尋求成功,在成功中享受快樂,在快樂中不斷超越,在超越中體驗(yàn)成長、

三角形內(nèi)角和教學(xué)設(shè)計(jì)14

  一、教學(xué)目標(biāo):

  1、理解掌握三角形內(nèi)角和是180°,并運(yùn)用這一性質(zhì)解決一些簡單的問題。

  2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實(shí)驗(yàn)活動(dòng)中,體驗(yàn)探索的過程和方法。

  3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗(yàn)。

  二、教學(xué)重、難點(diǎn):

  重點(diǎn):探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。

  難點(diǎn):運(yùn)用三角形內(nèi)角和等于180°的性質(zhì)解決一些實(shí)際問題。

  教具:課件、三角形若干。

  學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個(gè)。

  三、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  我們已經(jīng)學(xué)過了三角形的知識(shí),我們來復(fù)習(xí)一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個(gè)角呢?這三個(gè)角都叫做三角形的內(nèi)角,而這三個(gè)內(nèi)角的和就是這個(gè)三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點(diǎn)和規(guī)律呢?我們來看一個(gè)小片段,仔細(xì)聽它們都說了什么?

  教師放課件。

  課件內(nèi)容說明:一個(gè)大的直角三角形說:“我的'個(gè)頭大,我的內(nèi)角和一定比你們大!币粋(gè)鈍角三角形說:“我有一個(gè)鈍角,我的內(nèi)角和才是最大的)一個(gè)小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們?cè)跔幷撌裁磫?(它們(cè)跔幷撜l的內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評(píng)價(jià))果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

  (板書課題:三角形內(nèi)角和)

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點(diǎn)。

  (1)檢查作業(yè),并提出要求:

  昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個(gè)角的度數(shù),都完成了嗎?拿出來吧,一會(huì)我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動(dòng)記錄表。

  小組活動(dòng)記錄表

  小組成員的姓名

  三角形的形狀

  每個(gè)內(nèi)角的度數(shù)

  三角形內(nèi)角的和

 。ㄒ螅禾钔瓯砗,請(qǐng)小組成員仔細(xì)觀察你發(fā)現(xiàn)了什么?)

 、谛〗M合作。

  會(huì)使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。

  各組長進(jìn)行匯報(bào)。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

  師:實(shí)際上,三角形三個(gè)內(nèi)角和就是180°,只是因?yàn)闇y(cè)量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

  2、驗(yàn)證推測(cè)。

  那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會(huì)想到用折拼或剪拼的方法來看一看三角形的三個(gè)角和起來是不是180°,也就是說三角形的三個(gè)角能不能拼成一個(gè)平角。師生先演示撕下三個(gè)角拼在一起是否是平角,同學(xué)們?cè)谙旅娌僮鬟M(jìn)行體驗(yàn),再用課件演示把三個(gè)內(nèi)角折疊在一起(這時(shí)要注意平行折,把一個(gè)頂點(diǎn)放在邊上)學(xué)生也動(dòng)手試一試。

  通過我們的驗(yàn)證我們可以得出三角形的內(nèi)角和是180°。

  板書:(三角形內(nèi)角和等于180°。)

  3、師談話:三個(gè)三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對(duì)這三個(gè)三角形說點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對(duì)得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個(gè)角,可以求出第三個(gè)角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個(gè)銳角等于30°,求另一個(gè)銳角。

  生獨(dú)立做,再訂正格式、以及強(qiáng)調(diào)不要忘記寫度。

  小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習(xí)。

 。ㄈ╈柟叹毩(xí),拓展應(yīng)用

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個(gè)銳角是75°,另一個(gè)銳角是28°,求第三個(gè)銳角?第二幅圖是直角三角形已知一個(gè)銳角是35°,求另一個(gè)銳角?第三幅圖是鈍角三角形已知一個(gè)銳角是20°,另一個(gè)銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  說明:一個(gè)鈍角三角形說:我的兩個(gè)銳角之和大于90°。

  一個(gè)直角三角形說:我的兩個(gè)銳角之和正好等于90°。讓學(xué)生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運(yùn)用三角形內(nèi)角和是180°計(jì)算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

  三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時(shí)發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

 。ㄋ模┱n堂總結(jié)

  讓學(xué)生說說在這節(jié)課上的收獲!

三角形內(nèi)角和教學(xué)設(shè)計(jì)15

  教學(xué)目標(biāo):

  1、教會(huì)學(xué)生主動(dòng)探究新識(shí)的方法,學(xué)會(huì)運(yùn)用轉(zhuǎn)化遷移數(shù)學(xué)思想。

  2、學(xué)生通過量、剪、拼、擺、分割等驗(yàn)證三角形內(nèi)角和方法的比較,主動(dòng)掌握三角形內(nèi)角和是1800,并運(yùn)用所學(xué)知識(shí)解決簡單的實(shí)際問題,發(fā)展學(xué)生的觀察、歸納、概括能力和初步的空間想象力。

  教學(xué)重點(diǎn): 理解并掌握三角形的內(nèi)角和是180°。

  教學(xué)難點(diǎn): 驗(yàn)證所有三角形的內(nèi)角之和都是180°。

  教具準(zhǔn)備: 多媒體課件。

  學(xué)具準(zhǔn)備: 量角器、正方形、剪刀、各類三角形(包括直角三角形、銳角三角形、鈍角三角形)

  教學(xué)過程:

  一、導(dǎo)入

  師:知道今天我們學(xué)習(xí)什么內(nèi)容嗎?我們先來解讀一下課題,三角形,你手中有么?舉起來我看看,你拿的什么三角形?你呢?師:三角形按角分類,可分為直角三角形、鈍角三角形和銳角三角形。

  師:什么是內(nèi)角?你能把你手中三角形的三個(gè)內(nèi)角用角1、角2、角3標(biāo)出來嗎?

  師:還有一個(gè)關(guān)鍵字“和”,什么是三角形的內(nèi)角和?

  師:你認(rèn)為三角形的內(nèi)角和是多少度?你呢?都知道。渴嵌嗌俣劝?看來都知道了,就不用再學(xué)了吧?你還想學(xué)什么?

  師:看來我們不僅要知道三角形的內(nèi)角和是180度,還要親自證明一下為什么是180度。這才真了不起呢。能證明嗎?你想怎么證明阿?

  生:量一量的方法。

  師:光量就知道了?還要算一算。

  師:這種方法可行嗎?下面咱就來試試,請(qǐng)同學(xué)們4人一組,分工合作,先測(cè)量內(nèi)角,再計(jì)算求和。小組長把計(jì)算的過程記錄下來。開始吧。

  驗(yàn)證:量角、求和

  小組匯報(bào)

  生一:我們組量的是銳角三角形,三個(gè)角分別是50度、60度、70度,銳角三角形的內(nèi)角和是180度。

  生二:我們組量的是直角三角形,三個(gè)角分別是90度、35度、55度,直角三角形的內(nèi)角和是180度。

  生三:我們組量的是鈍角三角形,三個(gè)角分別是120度、40度、20度,鈍角三角形的內(nèi)角和是180度。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形,還是鈍角三角形,內(nèi)角和都是180度。

  師:下面同學(xué)測(cè)量得出180度的請(qǐng)你舉手,有沒有不是180度的?為什么有不同的答案呢?反思一下。我們?cè)跍y(cè)量的時(shí)候容易出現(xiàn)誤差,得出的結(jié)論就難以讓人信服?磥硭坪跤昧康姆椒ㄟ不能充分證明。(劃問號(hào))

  師:還敢接受更大挑戰(zhàn)嗎?把量角器和你的工具都收起來,只借助這張三角形紙片證明出三角形的內(nèi)角和是180度,你有辦法嗎?或許下面的同學(xué)還有別的方法,下面就請(qǐng)同學(xué)們互相交流交流,動(dòng)手試一試吧!

  師:這種方法怎么樣?(鼓掌)老師感到非常的驚喜,你看他們沒有破壞三角形,就這樣輕輕的一折,就解決了問題,真是很巧妙。

  師:你們小組每個(gè)同學(xué)都動(dòng)腦筋了,謝謝你們。

  師:還有那個(gè)小組用的這種方法?你們也非常的聰明。還有別的方法嗎?

  師:其實(shí)大家能用3種方法證明已經(jīng)很不簡單了,現(xiàn)在我們就能很自信的說三角形的內(nèi)角和是180度。(擦別的)

  師:其實(shí)對(duì)我來說重要的不是知識(shí)的結(jié)論,讓老師感動(dòng)的是你們那種渴望求知,敢于探索的精神。更讓老師高興的是你們積極思考所得出的創(chuàng)造性的方法,F(xiàn)在我們?cè)賮硪粔K回顧一下。

  師:這幾種方法都足以說明三角形的內(nèi)角和是180度。(結(jié)論)

  師:剛才同學(xué)們發(fā)揮自己的聰明才智,想了很多方法來證明。王老師也有一種方法能證明。老師這里有一個(gè)活動(dòng)角,借助課本的一邊就構(gòu)成了一個(gè)三角形,請(qǐng)你睜大眼睛仔細(xì)觀察,你發(fā)現(xiàn)了什么?

  請(qǐng)你再仔細(xì)觀察,你發(fā)現(xiàn)了什么?其實(shí)兩個(gè)底角減少的度數(shù),正是頂角增大的度數(shù)。如果我繼續(xù)按下去你覺得會(huì)怎樣?我們來看看是不是這樣,三角形呢?兩個(gè)底角呢?剛才三角形的動(dòng)態(tài)過程是不是也能證明三角形的內(nèi)角和是180度?

  師:看來只要大家肯動(dòng)腦筋,面對(duì)同一問題就會(huì)有不同的解決方法。

  師:現(xiàn)在我們知道了“三角形的內(nèi)角和是180度”,能不能用這個(gè)知識(shí)來解決一些問題啊?

  生:能。

  二、遷移和應(yīng)用

 。ㄒ唬c(diǎn)將臺(tái):

  下面哪三個(gè)角是同一個(gè)三角形的內(nèi)角?

  (1)30 °、60 °、45 °、90 °

  (2)52 °、46 °、54 °、80 °

 。3)45 °、46 °、90 °、45 °

  (二)我會(huì)算

  1、已知∠1,∠2,∠3是三角形的三個(gè)內(nèi)角。

 。1)∠1=38° ∠2=49°求∠3

  (2)∠2=65° ∠3=73° 求∠1

  2、已知∠1和∠2是直角三角形中的兩個(gè)銳角

  (1)∠1=50°求∠2

 。2)∠2=48°求∠1

  3、已知等腰三角形的一個(gè)底角是70°,它的頂角是多少度?

 。ㄈ。變變變!

 。1)一個(gè)三角形中, ∠1 、∠2、∠3。

  (2)如果把∠3剪掉,變成了幾邊形?它的內(nèi)角和變成多少度呢?

  (3)如果再把∠2剪掉,剩下圖形的內(nèi)角和是多少度呢?

  三、全課小結(jié)

  師:通過一節(jié)課的探索,你有什么收獲?

  生答(略)

  我的幾點(diǎn)認(rèn)識(shí):

  結(jié)合《三角形的內(nèi)角和》這節(jié)課,我對(duì)空間與圖形這一部分內(nèi)容,簡單的談一下自己的.認(rèn)識(shí)。

  空間與圖形這一部分內(nèi)容,可以用這幾個(gè)字來概括:難理解,難受,難掌握。在本節(jié)課的教學(xué)中,三角形的內(nèi)角和概念比較抽象,學(xué)生比較難理解。尤其是讓學(xué)生探究三角形的內(nèi)角和是180度,對(duì)學(xué)生來說更是難上加難。如果光憑在頭腦中想,不動(dòng)手實(shí)踐,對(duì)于三角形的內(nèi)角和,學(xué)生也只能機(jī)械記憶是180度。那如何更好的讓學(xué)生掌握和接受呢?針對(duì)這些特點(diǎn)我采用了一下幾點(diǎn)做法:

  1、根據(jù)學(xué)生的知識(shí)特點(diǎn)和生活經(jīng)驗(yàn),在原有基礎(chǔ)上創(chuàng)造性的使用教材。

  在教學(xué)本節(jié)課的內(nèi)容時(shí),學(xué)生在自己的日常生活或大部分都已經(jīng)知道三角形的內(nèi)角和是180。因材在這樣的情況下,我創(chuàng)造性的使用教材。不是讓學(xué)生通過自己動(dòng)手操作之后才發(fā)現(xiàn)三角形的內(nèi)角和是180,而是直接把問題拋給學(xué)生,你們知道三角形的內(nèi)角和是多少度嗎?

  你們?cè)趺粗赖?能自己證明么?這樣學(xué)生從被動(dòng)學(xué)習(xí)者的角色,

  立刻轉(zhuǎn)入主動(dòng)學(xué)習(xí)者的角色之中。這樣既能使學(xué)生很好的掌握知識(shí),又能使學(xué)生激發(fā)興趣,提高積極性。

  2、讓學(xué)生在小組交流中進(jìn)行思維的碰撞,在動(dòng)手操作的實(shí)踐過程中得到知識(shí)情感價(jià)值的升華。

  在探究的過程中,我們采用了小組合作學(xué)習(xí)方式,這樣既能給學(xué)生提供交流的空間,又能在短時(shí)間內(nèi)有效學(xué)習(xí)。學(xué)生先交流方法,商定出可行的辦法和方略,然后合作進(jìn)行實(shí)踐。學(xué)生會(huì)為了一個(gè)問題爭的面紅耳赤,在這個(gè)過程中我們驚喜的看到生在交流和動(dòng)手操作過程中得到了提高。通過自己的實(shí)踐證明,學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和的確是180度。

  總之,在教學(xué)空間與圖形的內(nèi)容時(shí),一定要讓學(xué)生看到“圖形",讓學(xué)生想象"空間”。

【三角形內(nèi)角和教學(xué)設(shè)計(jì)】相關(guān)文章:

《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)09-02

三角形內(nèi)角和教學(xué)設(shè)計(jì)11-18

三角形內(nèi)角和教學(xué)設(shè)計(jì)02-13

三角形內(nèi)角和教學(xué)設(shè)計(jì)(精選15篇)03-09

三角形內(nèi)角和教學(xué)設(shè)計(jì)15篇06-28

三角形內(nèi)角和教學(xué)設(shè)計(jì)(15篇)06-28

三角形的內(nèi)角和數(shù)學(xué)教學(xué)設(shè)計(jì)02-05

四年級(jí)《三角形內(nèi)角和》教學(xué)設(shè)計(jì)06-28

四年級(jí)《三角形內(nèi)角和》教學(xué)設(shè)計(jì)8篇01-05