- 相關(guān)推薦
小學(xué)數(shù)學(xué)《三角形內(nèi)角和》教學(xué)設(shè)計
在教學(xué)工作者實際的教學(xué)活動中,通常會被要求編寫教學(xué)設(shè)計,借助教學(xué)設(shè)計可以讓教學(xué)工作更加有效地進行。那么大家知道規(guī)范的教學(xué)設(shè)計是怎么寫的嗎?下面是小編幫大家整理的小學(xué)數(shù)學(xué)《三角形內(nèi)角和》教學(xué)設(shè)計,僅供參考,大家一起來看看吧。
小學(xué)數(shù)學(xué)《三角形內(nèi)角和》教學(xué)設(shè)計1
教材內(nèi)容:
北師大版義務(wù)教育課程標(biāo)準(zhǔn)實驗教材四年級下冊。
教學(xué)目標(biāo):
1、經(jīng)歷觀察、猜想、實驗、驗證等數(shù)學(xué)活動,探索并發(fā)現(xiàn)三角形的內(nèi)角和180°。在實驗活動中,體驗探索的過程和方法。
2、掌握三角形內(nèi)角和是180°這一性質(zhì),并能應(yīng)用這一性質(zhì)解決一些簡單的問題。
3、經(jīng)歷探究過程,發(fā)展推理能力,感受數(shù)學(xué)的邏輯美。
教學(xué)難點、重點:經(jīng)歷觀察、猜想、實驗、驗證等數(shù)學(xué)活動,探索并發(fā)現(xiàn)三角形的內(nèi)角和規(guī)律。
教具準(zhǔn)備:直角三角形、銳角三角形、鈍角三角形各3個,大三角形、小三角形各1個。
學(xué)具準(zhǔn)備:直角三角形、銳角三角形、鈍角三角形各3個。
教學(xué)設(shè)計意圖:
“三角形的內(nèi)角和180°”是三角形的一個重要性質(zhì),教材通過多種方法的操作實驗,讓學(xué)生確信這一個性質(zhì)的正確性。根據(jù)學(xué)生已有的知識經(jīng)驗和教材的內(nèi)容特點,本著“學(xué)生的數(shù)學(xué)學(xué)習(xí)過程是一個自主構(gòu)建自己對數(shù)學(xué)知識的理解過程”的教學(xué)理念,采用探究式教學(xué)方式,讓學(xué)生經(jīng)歷觀察、猜想、實驗、反思等數(shù)學(xué)活動,體驗知識的形成過程。整個教學(xué)設(shè)計力求改變學(xué)生的學(xué)習(xí)方式,突出學(xué)生的主體性。在教師的組織引導(dǎo)下,讓學(xué)生在開放的學(xué)習(xí)過程中,自始至終處于積極狀態(tài),主動參與學(xué)習(xí)過程,自主地進行探索與發(fā)現(xiàn),多角度和多樣化地解決問題,從而實現(xiàn)知識的自我建構(gòu),掌握科學(xué)研究的方法,形成實事求事的科學(xué)探究精神。
教學(xué)過程:
活動一:設(shè)疑激趣
師:我們已經(jīng)認識了三角形,關(guān)于三角形你知道了什么?
生1:三角形有3條邊、3個角。
生2:三角形按角分可以分為銳角三角形、直角三角形、鈍角三角形;三角形按邊分可以分為等腰三角形和不等邊三角形。
生3:每種三角形都至少有兩個銳角。
師:三角形有3個角,這3個角又叫三角形的內(nèi)角。三角形按內(nèi)角的不同分為銳角三角形、直角三角形、鈍角三角形。
師:能不能畫一個含有兩個直角或兩個鈍角的三角形呢?為什么?
生1:我試著畫過,畫不出來。
生2:因為每個三角形至少有兩個銳角,所以不可能畫出含有兩個直角或兩個鈍角的三角形。
生3:三角形的內(nèi)角和是180°,兩個直角的和已經(jīng)是180°,所以不可能。
師:你能解釋一下什么是“三角形的內(nèi)角和”嗎?你是怎樣知道“三角形的內(nèi)角和是180°”的?
生:把三角形的三個內(nèi)角的度數(shù)相加就是三角形的內(nèi)角和!叭切蔚膬(nèi)角和是180°”我是從書上看到的。
師:你驗證過了嗎?
生:沒有。
師:三角形的內(nèi)角和是不是180°?咱們還沒有認真地研究過,接下來,我們就一起來研究三角形的內(nèi)角和。
設(shè)計意圖:“我們已經(jīng)認識了三角形,關(guān)于三角形你知道什么?”課一開始,教師就設(shè)計了一個空間容量比較大的問題,旨在讓學(xué)生自主復(fù)習(xí)三角形的有關(guān)知識,引出三角形的內(nèi)角概念。然后創(chuàng)設(shè)一個能激發(fā)學(xué)生探究欲望的問題:“能不能畫出一個含有兩個直角或兩個鈍角的三角形呢?”有的學(xué)生通過動手畫,發(fā)現(xiàn)一個三角形中不可能有兩個直角或兩個鈍角;有的學(xué)生認為三角形的內(nèi)角和是180°,兩個直角的和已是180°,所以不可能。這種認識可能來自于書本,也可能來自于家長的輔導(dǎo),但學(xué)生對于“三角形的內(nèi)角和是180°”的體驗是沒有的,學(xué)生對所學(xué)的知識僅僅還是一種機械的識記,因此“三角形的內(nèi)角和是否為180°”就成了學(xué)生急切需要探究的問題。
活動二:自主探究
師:請同學(xué)們拿出課前準(zhǔn)備的材料,自己想辦法驗證三角形的內(nèi)角和是不是180。?
學(xué)生動手操作驗證。
師:請大家靜靜地思考1分鐘,將剛才的實驗過程在腦中梳理一下,F(xiàn)在請把自己的研究過程、結(jié)果跟大家交流一下。
生1:我是用量角器測量的,我量的是直角三角形:
90。+ 42。+47。=179。
生2:我量的也是直角三角形:
90。+43。+48。=181。
生3:我量的是銳角三角形:
32。+65。+83。=180。
生4:我量的是鈍角三角形:
120。+32。+30。=182。
生5:……
師:看到這些度量結(jié)果,你有什么想法?
生1:為什么他們測量的結(jié)果會不相同?
生2:也許我們測量的方法不精確。
生3:也許我們的量角器不標(biāo)準(zhǔn)。
生4:也可能三角形的內(nèi)角和不一定都是180°。
師:是呀,用量角器度量容易出現(xiàn)誤差,但這些度量的結(jié)果還是比較接近的,都在180°左右。
師:有沒有沒使用量角器來驗證的呢?
生:我是用三個相同的三角形來接的(如圖)!1、∠2、∠3剛好拼成一個平角,所以三角形的內(nèi)角和是180°。
師:你怎么知道這三個角拼成的大角剛好是一個平角呢?有辦法驗證嗎?
生1:用量角器測量不就知道了嗎?
生2:用三角板的兩個直角去拼來驗證。
生3:因為平角的兩條邊成一條直線,所以可用直尺來檢驗。
生4:再拿三個相同的三角形按上面的方法進行拼,這樣6個相同的.三角形,中間就可以拼出一個周角(如圖),周角的一半剛好是平角。
師:通過剛才的驗證,可以說明∠1、∠2、∠3拼成的角是平角,那么銳角三角形的三個內(nèi)角能拼成一個平角嗎?鈍角三角形呢?請大家試一試。師:如果現(xiàn)在只有一個三角形怎么辦?
生:我是將銳角三角形的三個角分別撕下來,拼成一個平角,平角是180°所以銳角三角形的內(nèi)角和是180°。
師:直角三角形、鈍角三角形行嗎?來試一試。
生1:老師,不剪下三角形的三個內(nèi)角也可以驗證。只要將三角形的三個內(nèi)角折拼在一起,看看是不是拼成一個平角就可以了。
師:大家就用折拼的方法試一試。
學(xué)生操作驗證。
師:剛才我們除了用量角器度量的方法,同學(xué)們還想出了其他一些方法:用三個相同的三角形拼、剪拼、折拼等方法,這些方法形式上看起來不一樣,其實有共同點嗎?
生:都是將三角形的三個內(nèi)角拼在一起,組成一個平角來驗證三角形的內(nèi)角和是不是180°。
師:通過上面的實驗,你 可以得出什么結(jié)論?
生:三角形的內(nèi)角和是180。
師:是任意三角形嗎?剛才我們才驗證了幾個三角形呀?怎么就可以說是任意三角形呢?
生:三角形按角分只有銳角三角形、直角三角形、鈍角三角形三種,剛才我們都驗證過了。
師:(出示一個大三角形)它的內(nèi)角和是多少度?如果將這個三角形縮小(出示一個小三角形),它的內(nèi)角和又是多少度?為什么?
生:三角形的三條邊縮短了,可它的三個角的大小沒變,所以它的內(nèi)角和還是180。
師生小結(jié):三角形不論形狀、大小,它的內(nèi)角和總是180。
設(shè)計意圖:學(xué)生明確探究主題后,教師只為學(xué)生提供探究所需的材料,而不直接給出實驗的方法和程序,激勵學(xué)生自己想辦法實驗驗證,獲得結(jié)論。然后引導(dǎo)學(xué)生交流、評價、反思與提升。驗證過程中較好地體現(xiàn)了解決同一問題思維方法,驗證策略的多樣性。促進了學(xué)生發(fā)散思維能力的提高,提升了思維品質(zhì)。
活動三:應(yīng)用拓展
1、計算下面各個三角形中的∠B的度數(shù)。
師:(圖2)怎樣求∠B?
生:180。-90。-55。=35。
師:還有不同的解法嗎?
生:180。÷2-55。=35。,因為三角形的內(nèi)角和是180。,其中一個直角是90。,另外兩個銳角的和剛好是90。
師:是不是任意一個直角三角形的兩銳角和都是90。呢?能驗證一下嗎?
生:因為任意三角形的內(nèi)角和是180。,其中一個直角是90。,所以其他兩個銳角的和肯定是90。
師:有沒有反對意見或表示懷疑的?從中我們可以發(fā)現(xiàn)一條什么規(guī)律?
生:直角三角形的兩個銳角和是90。
2、一個等腰三角形頂角是90。,兩個底角分別是多少度?
3、等邊三角形的每個內(nèi)角是多少度?
師:現(xiàn)在你能解決為什么一個三角形里不能有兩個直角或兩個鈍角嗎?
生:略。
師:通過這節(jié)課的學(xué)習(xí),你還有什么疑問或還想研究什么問題?
生:三角形有內(nèi)角和,三角形有外角和嗎?
師:你知道三角形的外角在哪兒嗎?三角形有外角和,它的外角和是多少度呢?有興趣的同學(xué)請課后研究。
課末,教師激勵學(xué)生提出新的問題:通過這節(jié)課的學(xué)習(xí),你還有什么疑問或者還想研究什么問題?培養(yǎng)學(xué)生的問題意識,同時讓學(xué)生帶著問題走出教室,拓展學(xué)生數(shù)學(xué)學(xué)習(xí)的時間和空間。
小學(xué)數(shù)學(xué)《三角形內(nèi)角和》教學(xué)設(shè)計2
教學(xué)目標(biāo):
1、通過測量一量、拼一拼、折一折三個活動,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。
2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
3、經(jīng)歷三角形內(nèi)角和的研究方法,感受數(shù)學(xué)研究方法。
教學(xué)重點:
1、探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180°。
2、已知三角形兩個角的度數(shù),會求出第三個角的度數(shù)。
教學(xué)難點:掌握探究方法(猜想-驗證-歸納總結(jié)),學(xué)會用“轉(zhuǎn)化”的數(shù)學(xué)思想探究三角形內(nèi)角和。
教學(xué)用具:表格、課件。
學(xué)具準(zhǔn)備:各種三角形、剪刀、量角器。
一、創(chuàng)設(shè)情境揭示課題。
1、一天兩個三角形發(fā)生了爭執(zhí),他們請你們來評評理。大三角形說:“我的個頭大,所以我的內(nèi)角和一定比你大!毙∪切魏懿桓市牡卣f:“我有一個鈍角,我的`內(nèi)角和一定比你大。”。誰說得有道理呢?今天讓我們來做一回裁判吧。
生1:大三角形大(個子大)
生2:小三角形大(有鈍角)
。ń處煵蛔雠袛啵寣W(xué)生帶著問題進入新課)
2、什么是三角形的內(nèi)角和?(板書:內(nèi)角和)
講解:三角形內(nèi)兩條邊所夾的角就叫做這個三角形的內(nèi)角。每個三角形都有三個內(nèi)角,這三個內(nèi)角的度數(shù)加起來就是三角形的內(nèi)角和。
二、自主探究,合作交流。
。ㄒ唬┨岢鰡栴}:
1、你認為誰說得對?你是怎么想的?
2、你有什么辦法可以比較一下這兩個三角形的內(nèi)角和呢?
生1:用量角器量一量三個內(nèi)角各是多少度,把它們加起來,再比較。
生2:用拼一拼的辦法把三個角拼到一起看它們能不能組成平角。
生3:用折一折的辦法把三個角折到一起看它們能不能組成平角
(二)探索與發(fā)現(xiàn)
活動一:量一量
。1)①了解活動要求:(屏幕顯示)
A、在練習(xí)本上畫一個三角形,量一量三角形三個內(nèi)角的度數(shù)并標(biāo)注。(測量時要認真,力求準(zhǔn)確)
B、把測量結(jié)果記錄在表格中,并計算三角形內(nèi)角和。
C、討論:從剛才的測量和計算結(jié)果中,你發(fā)現(xiàn)了什么?
(引導(dǎo)生回顧活動要求)
、谛〗M合作。
、蹍R報交流。
你們測量了幾個三角形?它們的內(nèi)角和分別是多少?從測量和計算結(jié)果中你們發(fā)現(xiàn)了什么?
。ㄒ龑(dǎo)學(xué)生發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180°,左右。)
。2)提出猜想
剛才我們通過測量和計算發(fā)現(xiàn)了三角形內(nèi)角和都在180度左右,那你能不能大膽的猜測一下:三角形內(nèi)角和是否相等?三角形的內(nèi)角和等于多少度呢?(板書:猜測)
活動二:拼一拼,驗證猜想
這個猜想是否成立呢?我們要想辦法來驗證一下。(板書驗證)
引導(dǎo):180°,跟我們學(xué)過的什么角有關(guān)?我們課前準(zhǔn)備了各種三角形紙片,你能不能利用這些三角形紙片,想辦法把三角形的三個內(nèi)角轉(zhuǎn)換成一個平角呢?
(1)小組合作,討論驗證方法。(把三個角撕下來,拼在一起,3個角拼成了一個平角,所以三角形內(nèi)角和就是180°)。
。2)討論:銳角三角形、直角三角形、鈍角三角形是否都能得出相同的結(jié)論呢?
(3)分組匯報,討論質(zhì)疑
。4)課件演示,驗證結(jié)果
活動三:折一折
師生一起活動,教師先讓學(xué)生看課件演示,然后拿出準(zhǔn)備好的三角形紙艮老師一起折一折。
。ò讶切蔚慕1折向它的對邊,使頂點落在對邊上,然后另外兩個角相向?qū)φ,使它們的頂點與角1的頂點互相重合,也證明了三角形內(nèi)角和等于180°,)。
討論:銳角三角形、直角三角形、鈍角三角形能否得到相同的結(jié)論?
提問:還有沒有其它的方法?
3、回顧兩種方法,歸納總結(jié),得出結(jié)論。
。1)引導(dǎo)學(xué)生得出結(jié)論。
孩子們,三角形內(nèi)角和到底等于多少度呢?”
學(xué)生答:“180°!”
(2)總結(jié)方法,齊讀結(jié)論
我們通過動作操作,折一折,拼一拼,把三角形的三個內(nèi)角轉(zhuǎn)換成了一個平角,成功的得到了這個結(jié)論,讓我們?yōu)樽约旱某晒恼疲↓R讀結(jié)論。(板書:得到結(jié)論)
。3)解釋測量誤差
為什么我們剛才通過測量,計算出來的三角形內(nèi)角和不是180°,呢?
那是因為我們在測量時,由于測量工具、測量操作等各方面的原因,使我們的測量結(jié)果存在一定的誤差。實際上,三角形內(nèi)角和就等于180°
(三)回顧問題:
現(xiàn)在你知道這兩個三角形誰說得對了嗎?(都不對。
為什么?請大家一起,自信肯定的告訴我。
生:因為三角形內(nèi)角和等于1800180°。(齊讀)
三、鞏固深化,加深理解。
1、試一試:數(shù)學(xué)書28頁第3題
∠A=180°-90°-30°
2、練一練:數(shù)學(xué)書29頁第一題(生獨立解決)
∠A=180°-75°-28°
3、小法官:數(shù)學(xué)書29頁第二題
四、回顧課堂,滲透數(shù)學(xué)方法。
1、總結(jié):猜想—驗證—歸納—應(yīng)用的數(shù)學(xué)方法。
2、介紹:三角形內(nèi)角和等于180度這個結(jié)論的由來;數(shù)學(xué)領(lǐng)域里還未被證明的其它猜想,如哥德巴赫猜想、霍啟猜想、龐加萊猜想等。
3、課堂延伸活動:探索——多邊形內(nèi)角和
板書設(shè)計:
探索與發(fā)現(xiàn)(一)
三角形內(nèi)角和等于180°
小學(xué)數(shù)學(xué)《三角形內(nèi)角和》教學(xué)設(shè)計3
【教學(xué)內(nèi)容】:人教版第八冊第85頁例5及“做一做”和練習(xí)十四的第9、10、12題。
【課程標(biāo)準(zhǔn)】:認識三角形,通過觀察、操作、了解三角形內(nèi)角和是180度。
【學(xué)情分析】:
學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生是不陌生的,因為學(xué)生有以前認識角、用量角器量三角板三個角的度數(shù)以及三角形的分類的基礎(chǔ),學(xué)生也有提前預(yù)習(xí)的習(xí)慣,很多孩子都能回答出三角形的內(nèi)角和是180度,但是他們卻不知道怎樣才能得出三角形的內(nèi)角和是180度。另外,經(jīng)過三年多的學(xué)習(xí),學(xué)生們已具備了初步的動手操作能力、主動探究能力以及小組合作的能力。
【學(xué)習(xí)目標(biāo)】:
1、結(jié)合具體圖形能描述出三角形的內(nèi)角、內(nèi)角和的含義。
2、在教師的引導(dǎo)下,通過猜測和計算能說出三角形的內(nèi)角和是180°。
3、在小組合作交流中,通過動手操作,實驗、驗證、總結(jié)三角形的內(nèi)角和是180°,同時發(fā)展動手動腦及分析推理能力。
4、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
【評價任務(wù)設(shè)計】:
1、利用孩子已有經(jīng)驗,通過教師的提問和引導(dǎo)以及學(xué)生的直觀觀察,說出三角形的內(nèi)角、內(nèi)角和的含義。達成目標(biāo)1。
2、在教師的引導(dǎo)下,以游戲的形式學(xué)生通過猜測三角形的內(nèi)角和是多少度,然后通過計算說出三角形的內(nèi)角和是180°的結(jié)論。達成目標(biāo)2。
3、在小組合作交流中,通折一折、拼一拼和擺一擺的動手操作、實驗、驗證并歸納總結(jié)出三角形的內(nèi)角和是180°。達成目標(biāo)3。
4、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”和習(xí)題第9、10、12題達成目標(biāo)4和目標(biāo)3。
【重難點】
教學(xué)重點:探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°。
教學(xué)難點: 充分發(fā)揮學(xué)生的主體作用,自主探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°
【教學(xué)過程】
一、復(fù)習(xí)準(zhǔn)備
1、三角形按角的不同可以分成哪幾類?
2、一個平角是多少度?1個平角等于幾個直角?兩個三角板上各個角的度數(shù)?
二、探究新知
。ㄒ唬﹦(chuàng)設(shè)情境,生成問題,認識三角形的內(nèi)角及內(nèi)角和
。úシ耪n件)在圖形王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大!变J角三角形也不示弱:“你雖然有一個鈍角,可其它兩個角都很小。但是我的三個角都不是很小。我的內(nèi)角和比你大”。直角三角形說:“別爭了,三角形的內(nèi)角和是180°,我們的內(nèi)角和是一樣大的!
師:動畫片看完了,請大家想一想,什么是三角形的內(nèi)角和?
師引導(dǎo)學(xué)生說出三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。
多媒體展示:三條線段在圍成三角形后,在三角形內(nèi)形成了三個角(課件閃爍三個角的弧線),我們把三角形內(nèi)的這三個角,分別叫做三角形的內(nèi)角(板書:內(nèi)角),這三個內(nèi)角的度數(shù)的和就叫做三角形的內(nèi)角和。
。ㄟ_成目標(biāo)1:利用多媒體播放動畫和孩子已有的經(jīng)驗,通過教師的提問和引導(dǎo),學(xué)生說出什么叫三角形的內(nèi)角及內(nèi)角和達成目標(biāo)1。多媒體創(chuàng)設(shè)的情景也為目標(biāo)二打好鋪墊)
(二)、引導(dǎo)猜測三角形的內(nèi)角和是180度
師:在課件展示的直角三角形、鈍角三角形、銳角三角形的對話中,你贊同誰的觀點?
預(yù)設(shè):學(xué)生回答直角三角形。
師:你為什么這么認為呢?
生:我是想三角板上三個角的度數(shù)是90度、45度、45度加起來是180度,90度、60度、30度加起來也是180度。
(達成目標(biāo)2:激發(fā)引導(dǎo)學(xué)生運用已有經(jīng)驗猜三角形的內(nèi)角和而不是盲目猜,激起學(xué)生的疑問和好奇心,這樣在教師的引導(dǎo)下,學(xué)生通過猜測三角形的內(nèi)角和是多少度,然后通過計算說出三角形的內(nèi)角和是180°的結(jié)論。)
。ㄈⅡ炞C三角形的內(nèi)角和是180度
1。確定研究范圍
師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究這一個行不行?(不行)那就隨便畫,挨個研究吧。(學(xué)生反對)那該怎樣去驗證呢?請你們想個辦法吧!
師:分類驗證是科學(xué)驗證的一種好方法,下面我們就用分類驗證的方法來驗證一下,看看三角形的內(nèi)角和是不是180°?
2、操作驗證
教師讓每個學(xué)習(xí)小組拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,在每個內(nèi)角標(biāo)上序號1、2、3。然后請任意用一個三角形,想辦法驗證我們的猜想。如果有困難,可以啟用老師提供的“智慧錦囊”或者尋求同學(xué)的幫助。
智慧錦囊:
。1)要知道三個內(nèi)角的和,只要知道三個角分別是多少度就可以了,你覺得哪個工具可以測出角的度數(shù)?試一試。
。2)180°的角是個特殊的角,它是個什么角?你能想辦法將這三個內(nèi)角轉(zhuǎn)化成這樣的角嗎?
3、匯報交流
師:誰來匯報你的驗證結(jié)果?
(1)測算法
師小結(jié):用量的方法驗證既然有誤差、不準(zhǔn),結(jié)論就難以讓人信服,那有沒有辦法更好地驗證我們的猜測呢?誰還有別的方法?
。2)剪拼法
。3)折拼法
師小結(jié):用拼和折的方法都能將三角形的三個內(nèi)角轉(zhuǎn)化成一個平角,從而借助我們學(xué)過的平角知識證明三角形的內(nèi)角和確實是180°,你們真會動腦筋!
。4)推算法
、侔岩粋長方形沿對角線分成兩個完全一樣的直角三角形。因為長方形的內(nèi)角和是360°,所以一個直角三角形的內(nèi)角和等于180°。(課件演示過程)
師:直角三角形的`內(nèi)角和已經(jīng)證明了是180°,現(xiàn)在我們只要能證明:銳角三角形和鈍角三角形的內(nèi)角和也是180°就可以了。
課件演示
②一個銳角三角形,從頂點往下畫一條垂線,將三角形分為兩個直角三角形,因為我們已經(jīng)知道直角三角形的內(nèi)角和是180°,所以兩個直角三角形的度數(shù)和就是360°,減去兩個直角的和180°,就是要證明的三角形內(nèi)角和,肯定是180°。
4、總結(jié)提煉
師:孩子們,剛才我們通過“量——拼——折——推”的方法分類驗證了三角形的內(nèi)角和是( )度?
現(xiàn)在可以下結(jié)論了嗎?
。ò鍟喝切稳齻內(nèi)角和等于180°。)
師:那在“三角形的爭吵中”誰是對的?
。ㄟ_成目標(biāo)3。此環(huán)節(jié)讓學(xué)生通過“量——拼——折——推”的方法分類驗證了三角形的內(nèi)角和是180度。此環(huán)節(jié)充分體現(xiàn)了學(xué)生學(xué)習(xí)的主動性。)
。ㄋ模├萌切蝺(nèi)角和是180解決問題
1、看圖,求出未知角的度數(shù)。
2、書本85頁“做一做”
在一個三角形中,∠1=140。,∠3=25。,求∠2的度數(shù)。
(達成目標(biāo)3和目標(biāo)4:能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”達成目標(biāo)3和目標(biāo)4.)
三、目標(biāo)達成檢測方案:
1、求出三角形各個角的度數(shù)。
2、埃及金字塔建于4500年前的埃及古王朝時期,它是用巨大石塊修砌成的方錐形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各異,外表有四個側(cè)面,每個側(cè)面都是等腰三角形。人們量得這個三角形的一個底角是64度。
四、課堂小結(jié),提升認識
同學(xué)們,這節(jié)課你有哪些收獲?我們是怎樣得到“三角形內(nèi)角和等于180度”這個結(jié)論的?
師:是啊,今天咱們不但知道了三角形的內(nèi)角和是180°,更重要的是我們經(jīng)歷了探究三角形內(nèi)角和的驗證方法。咱們從猜想出發(fā),經(jīng)過驗證(用量、拼、折、推等)得到了結(jié)論并利用結(jié)論解決了一些問題。孩子們,其實我們在不知不覺中已經(jīng)走了數(shù)學(xué)家的探究歷程……希望同學(xué)們在今后的學(xué)習(xí)中大膽應(yīng)用,勇于創(chuàng)新,做最棒的自己
【小學(xué)數(shù)學(xué)《三角形內(nèi)角和》教學(xué)設(shè)計】相關(guān)文章:
小學(xué)數(shù)學(xué)三角形內(nèi)角教學(xué)設(shè)計06-26
《三角形的內(nèi)角和》教學(xué)設(shè)計04-21
《三角形內(nèi)角和》教學(xué)設(shè)計05-03
《三角形的內(nèi)角和》教學(xué)設(shè)計05-08
三角形內(nèi)角和教學(xué)設(shè)計02-13
三角形內(nèi)角和教學(xué)設(shè)計06-10
三角形的內(nèi)角和數(shù)學(xué)教學(xué)設(shè)計02-05