97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

有理數(shù)的乘法教學(xué)設(shè)計

時間:2024-01-15 10:36:33 設(shè)計 我要投稿

有理數(shù)的乘法教學(xué)設(shè)計【精華5篇】

  作為一位不辭辛勞的人民教師,通常需要準備好一份教學(xué)設(shè)計,教學(xué)設(shè)計是對學(xué)業(yè)業(yè)績問題的解決措施進行策劃的過程。教學(xué)設(shè)計要怎么寫呢?以下是小編為大家收集的有理數(shù)的乘法教學(xué)設(shè)計,供大家參考借鑒,希望可以幫助到有需要的朋友。

有理數(shù)的乘法教學(xué)設(shè)計【精華5篇】

有理數(shù)的乘法教學(xué)設(shè)計1

  1.4.1有理數(shù)的乘法(第一課時)

  1.教材分析

  1.1教材的地位與作用

  教材借助歸納驗證的數(shù)學(xué)思想,結(jié)合學(xué)生已有知識,得出不同情況下兩個有理數(shù)相乘的結(jié)果,進而歸納出兩個有理數(shù)相乘的乘法法則。然后通過具體例子說明如何具體運用法則進行計算。接下來,從含有幾個正數(shù)與負數(shù)相乘的具體實例出發(fā),歸納出積的符號與各因數(shù)的符號的關(guān)系。同時,指出了“幾個數(shù)相乘,有一個因數(shù)是0,積為0”的規(guī)律。

  1.2教材的重難點分析 1.2.1教學(xué)重點

  運用有理數(shù)乘法法則正確進行計算。 1.2.2教學(xué)難點

  有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。 2.教學(xué)目標分析 2.1知識與技能

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算,并初步理解有理數(shù)乘法法則的合理性;

  2.2過程與方法

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。 2.3 情感態(tài)度與價值觀

  通過教材給出的氣溫變化問題,讓學(xué)生認識到數(shù)學(xué)來源于實踐并反作用于實踐。 3.學(xué)情分析

  本節(jié)課是學(xué)生在小學(xué)本已學(xué)過正數(shù)與零的乘法運算,在中學(xué)已引進了負有理數(shù)以及學(xué)過有理數(shù)的加減運算之后進行的。因此,在探索有理數(shù)乘法法則的.過程中,學(xué)生會比較容易找出規(guī)律,對于幾個不為0的有理數(shù)相乘,學(xué)生也容易抓住其運算的兩步驟,即先定符號,再將絕對值相乘。

  附:板書設(shè)計

  “有理數(shù)乘法法則”的教學(xué)設(shè)計,一般有兩類:一是列舉簡單事例,盡快給出法則,組織學(xué)生用較多的是練習(xí)法則、背法則,以求熟練地掌握和運用法則;另一類是讓學(xué)生體驗法則的探索過程,注重培養(yǎng)學(xué)生的觀察問題、發(fā)現(xiàn)問題的能力,猜測,驗證的能力。引入部分以及歸納、有理數(shù)相乘的法則

  前一類可能會取得較好的近期效果,但只注重知識技能的培養(yǎng),忽視了學(xué)生數(shù)學(xué)能力的培養(yǎng)

  有理數(shù)乘法兩步驟 練習(xí)處

  和發(fā)展;后者不僅重視了學(xué)生思維能力及素質(zhì)的培養(yǎng),還能提高學(xué)生的學(xué)習(xí)興趣。本數(shù)學(xué)設(shè)計采用的是較為適中的方法,沒有教材中引入的那么繁瑣,但同時兼顧了上述兩類設(shè)計的優(yōu)點。

  “有理數(shù)乘法法則”的教學(xué),在性質(zhì)上屬于定義教學(xué),看似容易,但實際上卻是難教又難學(xué)。半課例采用的是讓學(xué)生觀察、實踐、合作探討、發(fā)現(xiàn)的探索式學(xué)習(xí)方法,引導(dǎo)學(xué)生獨立思考,合作交流,體驗數(shù)學(xué)問題解決的過程,學(xué)會如何歸納和總結(jié)。

  “有理數(shù)乘法法則”的教學(xué)中,必須解決的3個難點是:如何自然地引入帶有負數(shù)的乘法;怎樣體現(xiàn)負負得正的合理性與必要性;怎樣說明有理數(shù)與1和0相乘的結(jié)果。

  在整個教學(xué)過程中,教師始終注意運用多種形式調(diào)動學(xué)生的學(xué)習(xí)積極性和主動性,以自主學(xué)習(xí)、合作交流的方式,把學(xué)習(xí)的主動權(quán)交給了學(xué)生,使學(xué)生成為學(xué)習(xí)的主體,激發(fā)學(xué)習(xí)積極性。通過小組比賽和個人搶答,既培養(yǎng)了合作精神,又增強了競爭意識。

  在數(shù)學(xué)教學(xué)中,不僅要求學(xué)生掌握基礎(chǔ)知識的應(yīng)用技能,而且要重視對學(xué)生的數(shù)學(xué)思維

  方法和創(chuàng)造思維能力的培養(yǎng)。學(xué)習(xí)從數(shù)學(xué)的角度提出問題、理解問題。體驗問題解決的過程,使學(xué)生在學(xué)習(xí)中感受成功的喜悅,建立自信心,從而積極參加與數(shù)學(xué)學(xué)習(xí)活動,激發(fā)學(xué)生強烈的求知欲。

有理數(shù)的乘法教學(xué)設(shè)計2

  一、教材分析

  有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算。它既是有理數(shù)運算的深入,又是進一步學(xué)習(xí)有理數(shù)的除法、乘方的基礎(chǔ)。對后續(xù)知識的學(xué)習(xí)也是至關(guān)重要的。

  二、學(xué)情分析

  對于初一學(xué)生來說,他們雖已通過學(xué)習(xí)有理數(shù)的加減法具備了初步探究問題的能力,對符號問題也有了一定的認識,但是對知識的主動遷移能力還比較弱,因此,只要引導(dǎo)學(xué)生確定了“積”的符號,實質(zhì)上就是小學(xué)算術(shù)中數(shù)的乘法運算了,突破了有理數(shù)乘法的符號法則這個難點,則對于有理數(shù)乘法的運算學(xué)生就不難掌握了。

  三、教學(xué)目標(核心素養(yǎng)立意)

  1、使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則,并能準確地進行有理數(shù)的乘法運算。

  2、初步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、和解決問題的能力。

  3、通過教學(xué),滲透化歸、分類討論等數(shù)學(xué)思想方法,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。

  4、傳授知識的同時,注意培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣和勇于探索的精神。

  四、教學(xué)重、難點

  重點:有理數(shù)的乘法法則。

  難點:有理數(shù)乘法的符號法則

  五、教學(xué)策略

  我在本節(jié)課的教學(xué)中采用誘思探究式教學(xué)法,并應(yīng)用多媒體現(xiàn)代教學(xué)手段,以學(xué)生為主體,通過引導(dǎo)啟發(fā)、自主探究、點撥歸納完成教學(xué)任務(wù),實現(xiàn)教學(xué)目標。

  六、教學(xué)過程(設(shè)計為七個環(huán)節(jié))

  1、復(fù)習(xí)導(dǎo)入創(chuàng)設(shè)情境

  我首先出示幾個相同負數(shù)和的計算題,利用乘法的意義很自然地引出負數(shù)與正數(shù)相乘的新內(nèi)容,以形成知識的遷移。進而引入本節(jié)課題,以問題引領(lǐng)來激發(fā)學(xué)生求知欲。

  2、師生互動探究新知

  要求學(xué)生自主學(xué)習(xí)課本內(nèi)容,完成課文中的填空。我給與學(xué)生充足的時間和空間。通過自主學(xué)習(xí),小組合作,教師點撥引導(dǎo)學(xué)生從有理數(shù)分為正數(shù)、零、負數(shù)三類的角度,區(qū)分出有理數(shù)乘法的情況有五種:(正×正、正×0、正×負、負×0、負×負)引導(dǎo)學(xué)生根據(jù)以上實例的運算結(jié)果,從積的符號和絕對值兩方面準確地歸納出有理數(shù)的乘法的符號法則和有理數(shù)乘法的運算法則。(板書:法則)(確定有理數(shù)乘法運算的兩步模型:先定符號,在求絕對值)

  這樣設(shè)計的目的是

  1、構(gòu)造這組有規(guī)律的算式讓學(xué)生通過觀察,來發(fā)現(xiàn)算式和結(jié)果在符號、絕對值方面的關(guān)系,找到乘法結(jié)果的符號規(guī)律,突破本節(jié)課的難點。同時又突出了本節(jié)課的教學(xué)重點。

  2、通過比較、分析、概括、討論、展示,滲透分類討論和從特殊歸納一般的數(shù)學(xué)思想和方法,提高學(xué)生整合知識的能力。使學(xué)生知道”如何觀察”“如何發(fā)現(xiàn)規(guī)律”。

  3、分析法則掌握實質(zhì)

  (有了以上的認識)通過設(shè)置問題4,讓學(xué)生帶著以上的結(jié)論,認真觀察(—5)×(—3)這個算式,首先確定積的符號(同號得正,先定號),再確定積的絕對值(5×3=15,再求值)。第二小題讓學(xué)生仿照第一小題填空、解答,理解法則的實質(zhì),真正掌握本節(jié)課的重點。這樣設(shè)計是為了再現(xiàn)知識的形成過程,避免單純的記憶,使學(xué)習(xí)過程成為一種再創(chuàng)造的過程。

  4、解決問題綜合運用

  通過習(xí)題(小試牛刀)的計算,既鞏固了有理數(shù)乘法的法則,又明確了倒數(shù)的定義,(板書:倒數(shù)-乘積是1的兩個數(shù)互為倒數(shù))。在有理數(shù)范圍內(nèi)仍有意義。本環(huán)節(jié)通過讓學(xué)生獨立思考、分組討論,完成填空,使學(xué)生有效的鞏固重點化解難點。

  5、體驗成功享受快樂

  利用摸牌游戲,抓住學(xué)生對競爭充滿興趣的心理特征,激發(fā)學(xué)生的學(xué)習(xí)興趣,用搶答題的形式,使學(xué)生的眼、耳、腦、口得到充分的'調(diào)動,并讓學(xué)生在搶答中體驗成功,享受快樂。通過學(xué)生參與活動,調(diào)動學(xué)生學(xué)習(xí)的積極性。同時讓學(xué)生通過本環(huán)節(jié)進一步理解有理數(shù)乘法法則,并在實際問題中進一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識,體現(xiàn)數(shù)學(xué)的應(yīng)用價值。這也是數(shù)學(xué)核心素養(yǎng)的要求。

  6、總結(jié)收獲暢談體會

  在課堂臨近尾聲時,我鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進行自我評價。讓學(xué)生充分發(fā)表自己的感受,并相互補充。及時有效的回顧小結(jié),進一步明確本節(jié)課的主要內(nèi)容、思想和方法。這樣設(shè)計的目的是培養(yǎng)學(xué)生的歸納能力和語言表達能力,以及善于反思的好習(xí)慣。讓學(xué)生品嘗收獲的喜悅,堅定今后學(xué)習(xí)數(shù)學(xué)的信心。

  7、布置作業(yè)鞏固深化

  七、課后反思

  在課堂教學(xué)過程中,我始終堅持以觀察為起點,以問題為主線,以能力培養(yǎng)為核心的宗旨;遵照教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的教學(xué)原則;遵循由已知到未知、由淺入深、由易到難的認知規(guī)律;采用誘思探究教學(xué)法,把課堂還給學(xué)生,讓他們主動去參與,去探究,去分析。通過創(chuàng)設(shè)、引導(dǎo)、滲透、歸納等活動讓學(xué)生在不知不覺中掌握重點,突破難點,發(fā)展能力,養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。更好的促進學(xué)生全面、持續(xù)、和諧的發(fā)展。本節(jié)課的設(shè)計一定還存在不少的紕漏和缺陷,敬請各位同仁批評指正。謝謝大家!

有理數(shù)的乘法教學(xué)設(shè)計3

  一、 教學(xué)目標

  1、 知識與技能目標

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、 能力與過程目標

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標

  通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

  二、 教學(xué)重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。

  三、 教學(xué)過程

  1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學(xué)生:26米。

  教師:能寫出算式嗎?學(xué)生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學(xué)生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。

 、 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  2 ×3=

 、 -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  2 ×(-3)=

 、 (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

 。-2) ×(-3)=

  (2)學(xué)生歸納法則

 、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?

 。+)×(+)=( ) 同號得

 。-)×(+)=( ) 異號得

 。+)×(-)=( ) 異號得

  (-)×(-)=( ) 同號得

 、诜e的絕對值等于 。

 、廴魏螖(shù)與零相乘,積仍為 。

 。3)師生共同用文字敘述有理數(shù)乘法法則。

  3、 運用法則計算,鞏固法則。

 。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。

 。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的`積為 。

 。3)學(xué)生做練習(xí),教師評析。

  (4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。

有理數(shù)的乘法教學(xué)設(shè)計4

  《有理數(shù)的懲罰》教學(xué)設(shè)計

  一、學(xué)情分析:

  1、學(xué)生的知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過非負有理數(shù)的四則運算以及運算律。在本章的前面幾節(jié)課中,又學(xué)習(xí)了數(shù)軸、相反數(shù)、絕對值的有關(guān)概念,并掌握了有理數(shù)的加減運算法則及其混和運算的方法,學(xué)會了由運算解決簡單的實際問題,具備了學(xué)習(xí)有理數(shù)乘法的知識技能基礎(chǔ)。

  2、學(xué)生的活動基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數(shù)的加法法則解決了一些實際問題,從而獲得了較為豐富的數(shù)學(xué)活動經(jīng)驗,同時在以前的學(xué)習(xí)中,學(xué)生曾經(jīng)歷了合作學(xué)習(xí)和探索學(xué)習(xí)的過程,具有了合作和探索的意識。

  二、教材分析:

  教科書基于學(xué)生已掌握了有理數(shù)加法、減法運算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習(xí)任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會進行有理數(shù)的運算。

  本節(jié)課的數(shù)學(xué)目標是:

  1、經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證能力;

  2、學(xué)會進行有理數(shù)的乘法運算,掌握確定多個不等于零的有理數(shù)相乘的積的符號方法以及有一個數(shù)為零積是零的情況:

  三、教學(xué)過程設(shè)計:

  本節(jié)課設(shè)計了六個環(huán)節(jié):第一環(huán)節(jié):問題情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗證明確結(jié)論;第四環(huán)節(jié):運用鞏固,練習(xí)提高;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):問題情境,引入新課

  問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。

  (2)如果用正號表示水位上升,用負號表示水位下降,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。

  設(shè)計意圖:培養(yǎng)學(xué)生從圖形語言和文字語言中獲取信息的能力,感受用數(shù)學(xué)知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。

  第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論

  問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式

  (-3×4)=-12,那么下列一組算式的結(jié)果應(yīng)該如何計算?請同學(xué)們思考:

  (-3)×3=_____;

  (-3)×2=_____;

  (-3)×1=_____;

  (-3)×0=_____。

  (2)當(dāng)同學(xué)們寫出結(jié)果并說明道理時,讓學(xué)生通過觀察這組算式等號兩邊的特點去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:

  (-3)×(-1)=_____;

  (-3)×(-2)=_____;

  (-3)×(-3)=_____;

  (-3)×(-4)=_____。

  教前設(shè)計意圖:以算式求解和探究問題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負數(shù)與非負數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負數(shù)與負數(shù)相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,能力和表述能力。

  教后事項:(1)本環(huán)節(jié)的設(shè)計理念是學(xué)生通過觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過程,并在合作交流中互相補充,完善結(jié)論。但在實際過程中,學(xué)生對結(jié)論的表述有困難,或者表達不準確,不全面,對于這些問題,不能求全責(zé)備,而應(yīng)循循善誘,順勢引導(dǎo),幫助學(xué)生盡可能簡練準確的表述,也不要擔(dān)心時間不足而代替學(xué)生直接表述法則。

  (2)展示兩組算式時,注意板書藝術(shù),把算式豎排,并對齊書寫,這樣易于學(xué)生觀察特點,發(fā)現(xiàn)規(guī)律。

  第三環(huán)節(jié):驗證明確結(jié)論

  問題:針對上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,絕對值相乘,任何數(shù)與零相乘,積仍為零。進行驗證活動,出示一組算式由學(xué)生完成。

  4×(-4)=_____;

  4×(-3)=_____;

  4×(-2)=_____;

  4×(-1)=_____;

  (—4)×0=_____;

  (—4)×1=_____;

  (—4)×2=_____;

  (—4)×(-1)=_____;

  (—4)×(-2)=_____。

  教前設(shè)計意圖:這個環(huán)節(jié)的設(shè)計一方面是因為它是合情推理的必要環(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合

  一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數(shù)乘法法則的練習(xí)和熟悉過程。

  教后反思事項:(1)教科書中沒有這個環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計這個環(huán)節(jié),確實讓學(xué)生體驗經(jīng)歷驗證過程。

  (2)本環(huán)節(jié)的`重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現(xiàn)驗證的作用和過程。

  (3)在用乘法法則計算時,要注意其運算步驟與加法運算一樣,都是先確定結(jié)果的符號,再進行絕對值的運算。另外還應(yīng)注意:法則中的“同號得正,異號得負”是專指“兩數(shù)相乘而言的,”不可以運用到加法運算中去。

  第四環(huán)節(jié):運用鞏固,練習(xí)提高

  活動內(nèi)容:

  (1)1。計算:

 、(-4)×5; ⑵(5-)×(-7);

 、(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);

  (2)2。計算:

 、(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);

  3。“議一議”:幾個有理數(shù)相乘,因數(shù)都不為零時,積的符號怎樣確定?有一個因數(shù)為零時,積是多少?

  (4)計算:

  ⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);

 、2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;

 、5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。

  教前設(shè)計意圖:對有理數(shù)乘法法則的鞏固和運用,練習(xí)和提高.

  教后反思事項:(1)學(xué)生先自主嘗試解決,全班交流,教師點撥要注意格式規(guī)范,一開始對每一步運算應(yīng)注明理由,運算熟練后,可不要求書寫每一步的理由;

  (2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵學(xué)生通過對例2的運算結(jié)果觀察分析,用自己的語言表達所發(fā)現(xiàn)的規(guī)律,學(xué)生有困難時,教師可設(shè)置如下一組算式讓學(xué)生計算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個任務(wù)。

  (-1)×2×3×4=_____;

  (-1)×(-2)×3×4=_____;

  (-1)×(-2)×(-3)×4=_____;

  (-1)×(-2)×(-3)×(-4)=_____;

  (-1)×(-2)×(-3)×(-4)×0=_____。

  通過對以上算式的計算和觀察,學(xué)生不難得出結(jié)論:多個數(shù)相乘,積的符號由負因數(shù)的個數(shù),當(dāng)負因數(shù)有奇數(shù)個時,積的符號為負;當(dāng)負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。當(dāng)然這段語言,不需要讓學(xué)習(xí)背誦,只要理解會用即可。

  第五環(huán)節(jié):感悟反思課堂小結(jié)

  問題

  1.本節(jié)課大家學(xué)會了什么?

  2.有理數(shù)乘法法則如何敘述?”

  3.有理數(shù)乘法法則的探索采用了什么方法?

  4.你的困惑是什么

  教前設(shè)計意圖:培養(yǎng)學(xué)生的口頭表達能力,提高學(xué)生的參與意識。激勵學(xué)生展示自我。

  教后反思事項:學(xué)生小結(jié)時,可能會有語言表達障礙或表達不流暢,但只要不影響運算的正確性,則不必強調(diào)準確記憶,而應(yīng)鼓勵學(xué)生大膽發(fā)言,同時教師可用準確的語言適時的加以點撥。

  第六環(huán)節(jié):布置作業(yè)

  鞏固作業(yè):教科書知識技能1、2;問題解決1;聯(lián)系擴廣1

  預(yù)習(xí)作業(yè);略

  四、教學(xué)反思:

  1、設(shè)計條理的問題串,使觀察、猜想、驗證水到渠成

  2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當(dāng)引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。

  3、合理使用多媒體教學(xué)手段可以彌補課堂時間的不足,但絕不能代替必要的板書。

有理數(shù)的乘法教學(xué)設(shè)計5

  一、教學(xué)目標

  1、使學(xué)生在了解有理數(shù)乘法的意義的基礎(chǔ)上,掌握有理數(shù)乘法法則,并初步掌握有理數(shù)乘法法則的合理性;

  2、培養(yǎng)學(xué)生觀察、歸納、概括及運算能力

  3使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;

  二、教學(xué)重點和難點

  重點:有理數(shù)乘法的運算。

  難點:有理數(shù)乘法中的符號法則。

  三、教學(xué)手段

  現(xiàn)代課堂教學(xué)手段

  四、教學(xué)方法

  啟發(fā)式教學(xué)

  五、教學(xué)過程

  (一)、研究有理數(shù)乘法法則

  問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?

  解①32=6

  答:上升了6厘米。

  問題2水庫的水位平均每小時上升-3厘米,2小時上升多少厘米?

  解:(-3)2=-6

  答:上升-6厘米(即下降6厘米)。

  引導(dǎo)學(xué)生比較①,②得出:

  把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。

  這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3(-2)=?(-3)(-2)=?(學(xué)生答)

  把3(-2)和①式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的'積應(yīng)是原來的積6的相反數(shù)-6,即3(-2)=-6.

  把(-3)(-2)和②式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來的積-6的相反數(shù)6,即(-3)(-2)=6.

【有理數(shù)的乘法教學(xué)設(shè)計】相關(guān)文章:

有理數(shù)的乘法教學(xué)設(shè)計02-26

有理數(shù)的乘法教學(xué)設(shè)計8篇02-26

有理數(shù)的乘法教學(xué)設(shè)計9篇02-26

分數(shù)乘法教學(xué)教學(xué)設(shè)計06-27

乘法口訣教學(xué)設(shè)計02-03

《分數(shù)乘法》教學(xué)設(shè)計11-04

8乘法教學(xué)設(shè)計05-29

小數(shù)乘法教學(xué)設(shè)計06-04

七年級數(shù)學(xué)有理數(shù)的乘法教案及教學(xué)設(shè)計06-21