97超级碰碰碰久久久_精品成年人在线观看_精品国内女人视频免费观_福利一区二区久久

不等式基本性質(zhì)教學(xué)設(shè)計(jì)

時(shí)間:2023-12-29 10:56:46 設(shè)計(jì) 我要投稿
  • 相關(guān)推薦

不等式基本性質(zhì)教學(xué)設(shè)計(jì)

  作為一名專(zhuān)為他人授業(yè)解惑的人民教師,時(shí)常要開(kāi)展教學(xué)設(shè)計(jì)的準(zhǔn)備工作,教學(xué)設(shè)計(jì)把教學(xué)各要素看成一個(gè)系統(tǒng),分析教學(xué)問(wèn)題和需求,確立解決的程序綱要,使教學(xué)效果最優(yōu)化。寫(xiě)教學(xué)設(shè)計(jì)需要注意哪些格式呢?以下是小編精心整理的不等式基本性質(zhì)教學(xué)設(shè)計(jì),歡迎大家分享。

不等式基本性質(zhì)教學(xué)設(shè)計(jì)

不等式基本性質(zhì)教學(xué)設(shè)計(jì)1

  一、教材分析

  1、本節(jié)課的地位、作用和意義

  基本不等式又稱(chēng)為均值不等式,選自普遍高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(北京師范大學(xué)出版社出版)必修5,第3章第3節(jié)內(nèi)容。學(xué)生在初中學(xué)習(xí)了完全平方公式、圓、初步認(rèn)識(shí)了不等式,同時(shí),在本章前面兩節(jié)學(xué)習(xí)了比較大小、一元二次不等式等,這些給本節(jié)課提供了堅(jiān)實(shí)的基礎(chǔ);基本不等式是后面基本不等式與最大(。┲档幕A(chǔ),在高中數(shù)學(xué)中有著比較重要的地位,在工業(yè)生產(chǎn)等有比較廣的實(shí)際應(yīng)用。

  2、本節(jié)課的教學(xué)重點(diǎn)和難點(diǎn)

  我通過(guò)解讀新課標(biāo)和分析教材,認(rèn)為:

  重點(diǎn):通過(guò)對(duì)新課程標(biāo)準(zhǔn)的解讀,教材內(nèi)容的解析,我認(rèn)為結(jié)果固然重要,但數(shù)學(xué)學(xué)習(xí)過(guò)程更重要,它有利于培養(yǎng)學(xué)生的數(shù)學(xué)思維和探究能力,所以均值不等式的推導(dǎo)是本節(jié)課的重點(diǎn)之一;再者,均值不等式有比較廣的應(yīng)用,需重點(diǎn)掌握,而掌握均值不等式,關(guān)鍵是對(duì)不等式成立條件的準(zhǔn)確理解,因此,均值不等式以及其成立的條件也是教學(xué)重點(diǎn)。

  突出重點(diǎn)的方法:我將采用①用分組討論,多媒體展示、引導(dǎo)啟發(fā)法來(lái)突出均值不等式的推導(dǎo);用重復(fù)法(在課堂的每一環(huán)節(jié),以各種方式進(jìn)行強(qiáng)調(diào)均值不等式和其成立的條件),變式教學(xué)來(lái)突出均值不等式及其成立的條件。

  難點(diǎn):很多同學(xué)對(duì)均值不等式成立的條件的認(rèn)識(shí)不深刻,在應(yīng)用時(shí)候常常出錯(cuò)誤,所以,均值不等式成立的條件是本節(jié)課的難點(diǎn)。

  突破難點(diǎn)的'方法:我將采用用重復(fù)法(在課堂的每一環(huán)節(jié),以各種方式進(jìn)行強(qiáng)調(diào)均值不等式和其成立的條件),變式教學(xué)等等來(lái)突破均值不等式成立的條件這個(gè)難點(diǎn)。

  二、教學(xué)目標(biāo)分析

  1、知識(shí)與技能目標(biāo)

 。2)理解的幾何意義。

  (3)能3分鐘內(nèi)寫(xiě)出基本不等式,并說(shuō)明其成立的條件,準(zhǔn)確率為95%

  2、過(guò)程方法與能力目標(biāo)

  (1)探索并了解均值不等式的證明過(guò)程。

 。2)體會(huì)均值不等式的證明方法。

  3、情感、態(tài)度、價(jià)值觀目標(biāo)

 。1)通過(guò)探索均值不等式的證明過(guò)程,培養(yǎng)探索、研究精神。

  (2)通過(guò)對(duì)均值不等式成立的條件的分析,養(yǎng)成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,勇于提出問(wèn)題、分析問(wèn)題的習(xí)慣。“探究”基本不等式的證明(1)

  【三維目標(biāo)】:

  一、知識(shí)與技能

  1.探索并了解基本不等式的證明過(guò)程,體會(huì)證明不等式的基本思想方法;

  2.會(huì)用基本不等式解決簡(jiǎn)單的最大(。┲祮(wèn)題;

  二、過(guò)程與方法

  三、情感、態(tài)度與價(jià)值觀

  1.通過(guò)本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣

  【教學(xué)重點(diǎn)與難點(diǎn)】:

  【學(xué)法與教學(xué)用具】:

  2.教學(xué)用具:直角板、圓規(guī)、投影儀(多媒體教室)

  【授課類(lèi)型】:新授課

  【課時(shí)安排】:1課時(shí)

  【教學(xué)思路】:

  一、創(chuàng)設(shè)情景,揭示課題

  1.提問(wèn):與哪個(gè)大?

  2.基本不等式的幾何背景:

  如圖是在北京召開(kāi)的第24界國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。你能在這個(gè)圖案中找出一些相等關(guān)系或不等關(guān)系嗎?(教師引導(dǎo)學(xué)生從面積的關(guān)系去找相等關(guān)系或不等關(guān)系)。

  二、研探新知

  重要不等式:一般地,對(duì)于任意實(shí)數(shù)、,我們有,當(dāng)且僅當(dāng)時(shí),等號(hào)成立。

  證明:

  所以

不等式基本性質(zhì)教學(xué)設(shè)計(jì)2

  一、教學(xué)設(shè)計(jì)理念:

  這節(jié)課的目標(biāo)定位分為三個(gè)層面:

  本節(jié)課我設(shè)計(jì)了五個(gè)環(huán)節(jié):

 、僮兘虒W(xué)生學(xué)會(huì)知識(shí)為指導(dǎo)學(xué)生會(huì)學(xué)知識(shí);

  導(dǎo)入新課

  師同學(xué)們能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?如何找??

  【三維目標(biāo)】:

  一、知識(shí)與技能

  二、過(guò)程與方法

  本節(jié)課是基本不等式應(yīng)用舉例的延伸。整堂課要圍繞如何引導(dǎo)學(xué)生分析題意、設(shè)未知量、找出數(shù)量關(guān)系進(jìn)行求解這個(gè)中心。

  三、情感、態(tài)度與價(jià)值觀

  1.引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識(shí)的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實(shí)事求是、理論與實(shí)際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德。

  【三維目標(biāo)】:

  一、知識(shí)與技能

  二、過(guò)程與方法

  三、情感、態(tài)度與價(jià)值觀

  1.通過(guò)本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來(lái)源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣

  二、重點(diǎn)、難點(diǎn)解讀

  三、知識(shí)點(diǎn)精析

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  探究基本不等式的證明過(guò)程,初步理解基本不等式

  2.過(guò)程與方法

  通過(guò)對(duì)基本不等式的不同角度的探究,滲透數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想.

  3.情感、態(tài)度與價(jià)值觀:

  三、教學(xué)資源普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))人教a版教材必修5

  中學(xué)數(shù)學(xué)周刊20xx年第10期百度

  四、教學(xué)方法與手段

  啟發(fā)學(xué)生探究,多媒體輔助教學(xué)

  五、教學(xué)過(guò)程

 。ㄒ唬﹦(chuàng)設(shè)情境:

  你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?

  設(shè)計(jì)意圖:創(chuàng)設(shè)問(wèn)題情境,為問(wèn)題的引出做鋪墊

 。ǘ┬轮骄浚簣D1

  將風(fēng)車(chē)抽象成圖2

  當(dāng)直角三角形變?yōu)榈妊苯侨切?圖2

  即時(shí),正方形efgh縮為一個(gè)點(diǎn),這時(shí)有

  2.過(guò)程與方法:通過(guò)實(shí)例探究抽象基本不等式;

  【教學(xué)重點(diǎn)】

  應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式的證明過(guò)程;

  【教學(xué)難點(diǎn)】

  基本不等式等號(hào)成立條件

  【教學(xué)過(guò)程】

  1.課題導(dǎo)入

  基本不等式的幾何背景:

  教師引導(dǎo)學(xué)生從面積的關(guān)系去找相等關(guān)系或不等關(guān)系

  2.講授新課

  1.探究圖形中的不等關(guān)系

  將圖中的“風(fēng)車(chē)”抽象成如圖,在正方形abcd中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長(zhǎng)為a,b那么正方形的.邊長(zhǎng)為。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式:。

  當(dāng)直角三角形變?yōu)榈妊苯侨切,即a=b時(shí),正方形efgh縮為一個(gè)點(diǎn),這時(shí)有。

  2.得到結(jié)論:一般的,如果

  3.思考證明:你能給出它的證明嗎?

不等式基本性質(zhì)教學(xué)設(shè)計(jì)3

  知識(shí)與技能:

  理解并掌握不等式的三個(gè)性質(zhì),能運(yùn)用性質(zhì),用不等號(hào)連接某些代數(shù)式,進(jìn)行不等式的變形。

  過(guò)程與方法:

  經(jīng)歷自主學(xué)習(xí),小組交流合作學(xué)習(xí),以及課堂上的成果,培養(yǎng)學(xué)生自主分析問(wèn)題,解決問(wèn)題的能力,養(yǎng)成與他人交流,共同學(xué)習(xí),共同進(jìn)步的學(xué)習(xí)方法。

  情感態(tài)度與價(jià)值觀:在自主分析,交流合作,成果的活動(dòng)中,感受學(xué)習(xí)的樂(lè)趣,體會(huì)與人合作的快樂(lè)。

  教學(xué)難點(diǎn):

  正確運(yùn)用不等式的性質(zhì)。

  教學(xué)重點(diǎn):

  理解并掌握不等式的性質(zhì)3。

  教學(xué)過(guò)程:

  一、創(chuàng)設(shè)情境引入新課

  利用一臺(tái)平衡的天平提出問(wèn)題,引入新課

  1、給不平衡的天平兩邊同時(shí)加入相同質(zhì)量的砝碼,天平會(huì)有什么變化?

  2、不平衡的天平兩邊同時(shí)拿掉相同質(zhì)量的`砝碼,天平會(huì)有什么變化?

  3、如果對(duì)不平衡的天平兩邊砝碼的質(zhì)量同時(shí)擴(kuò)大相同的倍數(shù),天平會(huì)平衡嗎?縮小相同的倍數(shù)呢?通過(guò)天平演示,結(jié)合自己的觀察和思考,讓學(xué)生感受生活中的不等關(guān)系。

  二、合作交流探究新知

  1、問(wèn)題情景:數(shù)學(xué)老師比語(yǔ)文老師年齡小。

  1、10年后誰(shuí)的年齡大?

  2、20年之后呢?

  3、5年之前呢?

  假設(shè)數(shù)學(xué),語(yǔ)文兩位老師的年齡分別為a,b,則a

  a+10

  a+20

  a—5

  2、探索與發(fā)現(xiàn)

  一組:已知5>3,則5+2 3+2

  5—2 3—2

  二組:已知—1

  —1—33—3

  想一想不等號(hào)的方向改變嗎?

  3、歸納:不等式的性質(zhì)1:

  不等式兩邊都加(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變

  如果a<b,那么a+c

  如果a>b,那么a+c >b+c,a—c >b—c。

  不等號(hào)方向不改變!

  4、大膽猜想

  不等式兩邊都加(或減去)同一個(gè)數(shù),不等號(hào)方向不改變

  不等式兩邊都加(或減去)同一個(gè)數(shù),不等號(hào)方向不改變

  不等式兩邊都乘(或除以)同一個(gè)數(shù)(不為零),不等號(hào)的方向呢?

  5、探索與發(fā)現(xiàn)

  已知4

  一組:4×2 6×(—2);

  4÷26÷(—2)。

  思考不等號(hào)方向改變嗎?

  不等式兩邊都乘(或除以)一個(gè)不為零的數(shù),不等號(hào)方向改不改變和什么有關(guān)?

  6、不等式的性質(zhì)2:

  不等式兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。

  如果a>b,且c>0,那么ac>bc,如果a0,那么ac

  7、不等式的性質(zhì)3:

  不等式兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。

  如果a>b,且c

  如果a

  三、鞏固提高拓展延伸

  例1:判斷下列各題的推導(dǎo)是否正確?為什么(學(xué)生口答)

 。1)因?yàn)?.5>5.7,所以—7.5<—5.7;

 。2)因?yàn)閍+8>4,所以a>—4;

 。3)因?yàn)?a>4b,所以a>b;

 。4)因?yàn)椤?>—2,所以—a—1>—a—2;

  (5)因?yàn)?>2,所以3a>2a.

 。1)正確,根據(jù)不等式基本性質(zhì)3.

 。2)正確,根據(jù)不等式基本性質(zhì)1.

 。3)正確,根據(jù)不等式基本性質(zhì)2.

  (4)正確,根據(jù)不等式基本性質(zhì)1.

  (5)不對(duì),應(yīng)分情況逐一討論.

  當(dāng)a>0時(shí),3a>2a.(不等式基本性質(zhì)2)

  當(dāng)a=0時(shí),3a=2a.

  當(dāng)a<0時(shí),3a<2a.(不等式基本性質(zhì)3)

  考考你!0>4,哪里錯(cuò)了?

  已知m>n,兩邊都乘以4,得4m>4n,兩邊都減去4m,得0>4n—4m,即0>4(n—m),兩邊同時(shí)除以(n—m),得0>4。

  等式與不等式的性質(zhì)

  1、不等式的三個(gè)性質(zhì)。

  2、等式與不等式的性質(zhì)對(duì)比。

  先前后比較,再定不等號(hào)

  四、總結(jié)歸納

  1、等式性質(zhì)與不等式性質(zhì)的不同之處;

  2、在運(yùn)用“不等式性質(zhì)3"時(shí)應(yīng)注意的問(wèn)題.學(xué)生通過(guò)總結(jié),可以幫助自己從整體上把握本節(jié)課所學(xué)知識(shí)培養(yǎng)良好的學(xué)習(xí)習(xí)慣,也為下節(jié)課學(xué)好解不等式打下基礎(chǔ)。

  五、布置作業(yè)

  1、必做題:教科書(shū)第134頁(yè)習(xí)題9.1第4、5題

  2、選做題:教科書(shū)第134頁(yè)習(xí)題9。 1第7題.

不等式基本性質(zhì)教學(xué)設(shè)計(jì)4

  教學(xué)分析

  本節(jié)課的研究是對(duì)初中不等式學(xué)習(xí)的延續(xù)和拓展,也是實(shí)數(shù)理論的進(jìn)一步發(fā)展。在本節(jié)課的學(xué)習(xí)過(guò)程中,將讓學(xué)生回憶實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來(lái)比較兩個(gè)代數(shù)式的大小。

  通過(guò)本節(jié)課的學(xué)習(xí),讓學(xué)生從一系列的具體問(wèn)題情境中,感受到在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,并充分認(rèn)識(shí)不等關(guān)系的存在與應(yīng)用。對(duì)不等關(guān)系的相關(guān)素材,用數(shù)學(xué)觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成量與量的比較過(guò)程。即能用不等式或不等式組把這些不等關(guān)系表示出來(lái)。

  在本節(jié)課的學(xué)習(xí)過(guò)程中還安排了一些簡(jiǎn)單的、學(xué)生易于處理的問(wèn)題,其用意在于讓學(xué)生注意對(duì)數(shù)學(xué)知識(shí)和方法的應(yīng)用,同時(shí)也能激發(fā)學(xué)生的學(xué)習(xí)興趣,并由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望。根據(jù)本節(jié)課的教學(xué)內(nèi)容,應(yīng)用再現(xiàn)、回憶得出實(shí)數(shù)的基本理論,并能用實(shí)數(shù)的基本理論來(lái)比較兩個(gè)代數(shù)式的大小。

  在本節(jié)教學(xué)中,教師可讓學(xué)生閱讀書(shū)中實(shí)例,充分利用數(shù)軸這一簡(jiǎn)單的數(shù)形結(jié)合工具,直接用實(shí)數(shù)與數(shù)軸上點(diǎn)的一一對(duì)應(yīng)關(guān)系,從數(shù)與形兩方面建立實(shí)數(shù)的順序關(guān)系。要在溫故知新的基礎(chǔ)上提高學(xué)生對(duì)不等式的認(rèn)識(shí)。

  三維目標(biāo)

  1.在學(xué)生了解不等式產(chǎn)生的實(shí)際背景下,利用數(shù)軸回憶實(shí)數(shù)的基本理論,理解實(shí)數(shù)的大小關(guān)系,理解實(shí)數(shù)大小與數(shù)軸上對(duì)應(yīng)點(diǎn)位置間的關(guān)系。

  2.會(huì)用作差法判斷實(shí)數(shù)與代數(shù)式的大小,會(huì)用配方法判斷二次式的大小和范圍。

  3.通過(guò)溫故知新,提高學(xué)生對(duì)不等式的認(rèn)識(shí),激發(fā)學(xué)生的學(xué)習(xí)興趣,體會(huì)數(shù)學(xué)的奧秘與數(shù)學(xué)的結(jié)構(gòu)美。

  重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn):比較實(shí)數(shù)與代數(shù)式的大小關(guān)系,判斷二次式的大小和范圍。

  教學(xué)難點(diǎn):準(zhǔn)確比較兩個(gè)代數(shù)式的大小。

  課時(shí)安排

  1課時(shí)

  教學(xué)過(guò)程

  導(dǎo)入新課

  思路1.(章頭圖導(dǎo)入)通過(guò)多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫(huà)面,它將學(xué)生帶入“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同”的大自然和浩瀚的宇宙中,使學(xué)生在具體情境中感受到不等關(guān)系在現(xiàn)實(shí)世界和日常生活中是大量存在的,由此產(chǎn)生用數(shù)學(xué)研究不等關(guān)系的強(qiáng)烈愿望,自然地引入新課。

  思路2.(情境導(dǎo)入)列舉出學(xué)生身體的高矮、身體的輕重、距離學(xué)校路程的遠(yuǎn)近、百米賽跑的時(shí)間、數(shù)學(xué)成績(jī)的多少等現(xiàn)實(shí)生活中學(xué)生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關(guān)系。這些不等關(guān)系怎樣在數(shù)學(xué)上表示出來(lái)呢?讓學(xué)生自由地展開(kāi)聯(lián)想,教師組織不等關(guān)系的相關(guān)素材,讓學(xué)生用數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納,使學(xué)生在具體情境中感受到不等關(guān)系與相等關(guān)系一樣,在現(xiàn)實(shí)世界和日常生活中大量存在著。這樣學(xué)生會(huì)由衷地產(chǎn)生用數(shù)學(xué)工具研究不等關(guān)系的愿望,從而進(jìn)入進(jìn)一步的探究學(xué)習(xí),由此引入新課。

  推進(jìn)新課

  新知探究

  提出問(wèn)題

  1回憶初中學(xué)過(guò)的不等式,讓學(xué)生說(shuō)出“不等關(guān)系”與“不等式”的異同。怎樣利用不等式研究及表示不等關(guān)系?

  2在現(xiàn)實(shí)世界和日常生活中,既有相等關(guān)系,又存在著大量的不等關(guān)系。你能舉出一些實(shí)際例子嗎?

  3數(shù)軸上的任意兩點(diǎn)與對(duì)應(yīng)的兩實(shí)數(shù)具有怎樣的關(guān)系?

  4任意兩個(gè)實(shí)數(shù)具有怎樣的關(guān)系?用邏輯用語(yǔ)怎樣表達(dá)這個(gè)關(guān)系?

  活動(dòng):教師引導(dǎo)學(xué)生回憶初中學(xué)過(guò)的不等式概念,使學(xué)生明確“不等關(guān)系”與“不等式”的異同。不等關(guān)系強(qiáng)調(diào)的是關(guān)系,可用符號(hào)“>”“b”“a

  教師與學(xué)生一起舉出我們?nèi)粘I钪胁坏汝P(guān)系的例子,可讓學(xué)生充分合作討論,使學(xué)生感受到現(xiàn)實(shí)世界中存在著大量的不等關(guān)系。在學(xué)生了解了一些不等式產(chǎn)生的實(shí)際背景的前提下,進(jìn)一步學(xué)習(xí)不等式的有關(guān)內(nèi)容。

  實(shí)例1:某天的天氣預(yù)報(bào)報(bào)道,最高氣溫32 ℃,最低氣溫26 ℃.

  實(shí)例2:對(duì)于數(shù)軸上任意不同的兩點(diǎn)A、B,若點(diǎn)A在點(diǎn)B的左邊,則xA

  實(shí)例3:若一個(gè)數(shù)是非負(fù)數(shù),則這個(gè)數(shù)大于或等于零。

  實(shí)例4:兩點(diǎn)之間線段最短。

  實(shí)例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。

  實(shí)例6:限速40 km/h的路標(biāo)指示司機(jī)在前方路段行駛時(shí),應(yīng)使汽車(chē)的速度v不超過(guò)40 km/h.

  實(shí)例7:某品牌酸奶的質(zhì)量檢查規(guī)定,酸奶中脂肪的含量f應(yīng)不少于2.5%,蛋白質(zhì)的含量p應(yīng)不少于2.3%.

  教師進(jìn)一步點(diǎn)撥:能夠發(fā)現(xiàn)身邊的數(shù)學(xué)當(dāng)然很好,這說(shuō)明同學(xué)們已經(jīng)走進(jìn)了數(shù)學(xué)這門(mén)學(xué)科,但作為我們研究數(shù)學(xué)的人來(lái)說(shuō),能用數(shù)學(xué)的眼光、數(shù)學(xué)的觀點(diǎn)進(jìn)行觀察、歸納、抽象,完成這些量與量的比較過(guò)程,這是我們每個(gè)研究數(shù)學(xué)的人必須要做的,那么,我們可以用我們所研究過(guò)的什么知識(shí)來(lái)表示這些不等關(guān)系呢?學(xué)生很容易想到,用不等式或不等式組來(lái)表示這些不等關(guān)系。那么不等式就是用不等號(hào)將兩個(gè)代數(shù)式連結(jié)起來(lái)所成的式子。如-71+4,2x≤6,a+2≥0,3≠4,0≤5等。

  教師引導(dǎo)學(xué)生將上述的7個(gè)實(shí)例用不等式表示出來(lái)。實(shí)例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實(shí)例3,若用x表示一個(gè)非負(fù)數(shù),則x≥0.實(shí)例5|AC|+|BC|>|AB|,如下圖。

  |AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

  |AB|-|BC|

  實(shí)例6,若用v表示速度,則v≤40 km/h.實(shí)例7,f≥2.5%,p≥2.3%.對(duì)于實(shí)例7,教師應(yīng)點(diǎn)撥學(xué)生注意酸奶中的'脂肪含量與蛋白質(zhì)含量需同時(shí)滿足,避免寫(xiě)成f≥2.5%或p≥2.3%,這是不對(duì)的。但可表示為f≥2.5%且p≥2.3%.

  對(duì)以上問(wèn)題,教師讓學(xué)生輪流回答,再用投影儀給出課本上的兩個(gè)結(jié)論。

  討論結(jié)果:

  (1)(2)略;(3)數(shù)軸上任意兩點(diǎn)中,右邊點(diǎn)對(duì)應(yīng)的實(shí)數(shù)比左邊點(diǎn)對(duì)應(yīng)的實(shí)數(shù)大。

  (4)對(duì)于任意兩個(gè)實(shí)數(shù)a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b

  應(yīng)用示例

  例1(教材本節(jié)例1和例2)

  活動(dòng):通過(guò)兩例讓學(xué)生熟悉兩個(gè)代數(shù)式的大小比較的基本方法:作差,配方法。

  點(diǎn)評(píng):本節(jié)兩例的求解,是借助因式分解和應(yīng)用配方法完成的,這兩種方法是代數(shù)式變形時(shí)經(jīng)常使用的方法,應(yīng)讓學(xué)生熟練掌握。

  變式訓(xùn)練

  1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關(guān)系是( )

  A.f(x)>g(x) B.f(x)=g(x)

  C.f(x)

  答案:A

  解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

  2.已知x≠0,比較(x2+1)2與x4+x2+1的大小。

  解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

  ∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

  例2比較下列各組數(shù)的大小(a≠b).

  (1)a+b2與21a+1b(a>0,b>0);

  (2)a4-b4與4a3(a-b).

  活動(dòng):比較兩個(gè)實(shí)數(shù)的大小,常根據(jù)實(shí)數(shù)的運(yùn)算性質(zhì)與大小順序的關(guān)系,歸結(jié)為判斷它們的差的符號(hào)來(lái)確定。本例可由學(xué)生獨(dú)立完成,但要點(diǎn)撥學(xué)生在最后的符號(hào)判斷說(shuō)理中,要理由充分,不可忽略這點(diǎn)。

  解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.

  ∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.

  (2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

  =(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

  =-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

  ∵2a2+(a+b)2≥0(當(dāng)且僅當(dāng)a=b=0時(shí)取等號(hào)),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]

  ∴a4-b4

  點(diǎn)評(píng):比較大小常用作差法,一般步驟是作差——變形——判斷符號(hào)。變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個(gè)或幾個(gè)完全平方式的“和”,也可兩者并用。

  變式訓(xùn)練

  已知x>y,且y≠0,比較xy與1的大小。

  活動(dòng):要比較任意兩個(gè)數(shù)或式的大小關(guān)系,只需確定它們的差與0的大小關(guān)系。

  解:xy-1=x-yy.

  ∵x>y,∴x-y>0.

  當(dāng)y

  當(dāng)y>0時(shí),x-yy>0,即xy-1>0.∴xy>1.

  點(diǎn)評(píng):當(dāng)字母y取不同范圍的值時(shí),差xy-1的正負(fù)情況不同,所以需對(duì)y分類(lèi)討論。

  例3建筑設(shè)計(jì)規(guī)定,民用住宅的窗戶面積必須小于地板面積。但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個(gè)比值越大,住宅的采光條件越好。試問(wèn):同時(shí)增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請(qǐng)說(shuō)明理由。

  活動(dòng):解題關(guān)鍵首先是把文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)語(yǔ)言,然后比較前后比值的大小,采用作差法。

  解:設(shè)住宅窗戶面積和地板面積分別為a、b,同時(shí)增加的面積為m,根據(jù)問(wèn)題的要求a

  由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.

  所以同時(shí)增加相等的窗戶面積和地板面積后,住宅的采光條件變好了。

  點(diǎn)評(píng):一般地,設(shè)a、b為正實(shí)數(shù),且a0,則a+mb+m>ab.

  變式訓(xùn)練

  已知a1,a2,…為各項(xiàng)都大于零的等比數(shù)列,公比q≠1,則( )

  A.a1+a8>a4+a5 B.a1+a8

  C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

  答案:A

  解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

  =a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

  ∵{an}各項(xiàng)都大于零,∴q>0,即1+q>0.

  又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

  知能訓(xùn)練

  1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的個(gè)數(shù)為( )

  A.3 B.2 C.1 D.0

  2.比較2x2+5x+9與x2+5x+6的大小。

  答案:

  1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.

  ∴只有①恒成立。

  2.解:因?yàn)?x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.

  課堂小結(jié)

  1.教師與學(xué)生共同完成本節(jié)課的小結(jié),從實(shí)數(shù)的基本性質(zhì)的回顧,到兩個(gè)實(shí)數(shù)大小的比較方法;從例題的活動(dòng)探究點(diǎn)評(píng),到緊跟著的變式訓(xùn)練,讓學(xué)生去繁就簡(jiǎn),聯(lián)系舊知,將本節(jié)課所學(xué)納入已有的知識(shí)體系中。

  2.教師畫(huà)龍點(diǎn)睛,點(diǎn)撥利用實(shí)數(shù)的基本性質(zhì)對(duì)兩個(gè)實(shí)數(shù)大小比較時(shí)易錯(cuò)的地方。鼓勵(lì)學(xué)有余力的學(xué)生對(duì)節(jié)末的思考與討論在課后作進(jìn)一步的探究。

  作業(yè)

  習(xí)題3—1A組3;習(xí)題3—1B組2.

  設(shè)計(jì)感想

  1.本節(jié)設(shè)計(jì)關(guān)注了教學(xué)方法的優(yōu)化。經(jīng)驗(yàn)告訴我們:課堂上應(yīng)根據(jù)具體情況,選擇、設(shè)計(jì)最能體現(xiàn)教學(xué)規(guī)律的教學(xué)過(guò)程,不宜長(zhǎng)期使用一種固定的教學(xué)方法,或原封不動(dòng)地照搬一種實(shí)驗(yàn)?zāi)J。各種教學(xué)方法中,沒(méi)有一種能很好地適應(yīng)一切教學(xué)活動(dòng)。也就是說(shuō),世上沒(méi)有萬(wàn)能的教學(xué)方法。針對(duì)個(gè)性,靈活變化,因材施教才是成功的施教靈藥。

  2.本節(jié)設(shè)計(jì)注重了難度控制。不等式內(nèi)容應(yīng)用面廣,可以說(shuō)與其他所有內(nèi)容都有交匯,歷來(lái)是高考的重點(diǎn)與熱點(diǎn)。作為本章開(kāi)始,可以適當(dāng)開(kāi)闊一些,算作拋磚引玉,讓學(xué)生有個(gè)自由探究聯(lián)想的平臺(tái),但不宜過(guò)多向外拓展,以免對(duì)學(xué)生產(chǎn)生負(fù)面影響。

  3.本節(jié)設(shè)計(jì)關(guān)注了學(xué)生思維能力的訓(xùn)練。訓(xùn)練學(xué)生的思維能力,提升思維的品質(zhì),是數(shù)學(xué)教師直面的重要課題,也是中學(xué)數(shù)學(xué)的主線。采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化。變式訓(xùn)練教學(xué)又可以拓展學(xué)生思維視野的廣度,解題后的點(diǎn)撥反思有助于學(xué)生思維批判性品質(zhì)的提升。

  備課資料

  備用習(xí)題

  1.比較(x-3)2與(x-2)(x-4)的大小。

  2.試判斷下列各對(duì)整式的大。(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.

  3.已知x>0,求證:1+x2>1+x .

  4.若x

  5.設(shè)a>0,b>0,且a≠b,試比較aabb與abba的大小。

  參考答案:

  1.解:∵(x-3)2-(x-2)(x-4)

  =(x2-6x+9)-(x2-6x+8)

  =1>0,∴(x-3)2>(x-2)(x-4).

  2.解:(1)(m2-2m+5)-(-2m+5)

  =m2-2m+5+2m-5

  =m2.

  ∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.

  ∴m2-2m+5≥-2m+5.

  (2)(a2-4a+3)-(-4a+1)

  =a2-4a+3+4a-1

  =a2+2.

  ∵a2≥0,∴a2+2≥2>0.

  ∴a2-4a+3>-4a+1.

  3.證明:∵(1+x2)2-(1+x)2

  =1+x+x24-(x+1)

  =x24,又∵x>0,∴x24>0.

  ∴(1+x2)2>(1+x)2.

  由x>0,得1+x2>1+x.

  4.解:(x2+y2)(x-y)-(x2-y2)(x+y)

  =(x-y)[(x2+y2)-(x+y)2]

  =-2xy(x-y).

  ∵x0,x-y

  ∴-2xy(x-y)>0.

  ∴(x2+y2)(x-y)>(x2-y2)(x+y).

  5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,當(dāng)a>b>0時(shí),ab>1,a-b>0,則(ab)a-b>1,于是aabb>abba.

  當(dāng)b>a>0時(shí),0

  則(ab)a-b>1.

  于是aabb>abb a.

  綜上所述,對(duì)于不相等的正數(shù)a、b,都有aabb>abba.

【不等式基本性質(zhì)教學(xué)設(shè)計(jì)】相關(guān)文章:

比的基本性質(zhì)教學(xué)設(shè)計(jì)05-07

《比例的基本性質(zhì)》教學(xué)設(shè)計(jì)03-31

《分?jǐn)?shù)基本性質(zhì)》教學(xué)設(shè)計(jì)07-01

分?jǐn)?shù)基本性質(zhì)教學(xué)設(shè)計(jì)02-15

《分?jǐn)?shù)的基本性質(zhì)》教學(xué)設(shè)計(jì)12-04

分?jǐn)?shù)的基本性質(zhì)教學(xué)設(shè)計(jì)04-05

《比例的基本性質(zhì)》教學(xué)設(shè)計(jì)05-04

不等式的基本性質(zhì)知識(shí)點(diǎn)總結(jié)06-24

蘇教版數(shù)學(xué)《比例的基本性質(zhì)》教學(xué)設(shè)計(jì)07-04