《公倍數(shù)與最小公倍數(shù)》教學(xué)實(shí)錄
活動(dòng)過程:
活動(dòng)(一):操作探究——揭示公倍數(shù)和最小公倍數(shù)的概念
1.出示活動(dòng)材料
2.揭示活動(dòng)要求:用長(zhǎng)3厘米、寬2厘米的小長(zhǎng)方形鋪邊長(zhǎng)為6厘米、8厘米的正方形,能正好鋪滿嗎?(議一議,明確什么叫正好)
3.猜想,能不能正好鋪滿。
4.操作,在桌上很快地鋪一鋪,(提醒學(xué)生在操作中能發(fā)現(xiàn)一些問題思考一些問題)
說說發(fā)現(xiàn)的問題(生:第二塊不能正好鋪滿)
5.演示,第一塊能正好鋪滿,第二塊不能正好鋪滿。
6.探究:為什么會(huì)這樣?這可能與正方形的什么有關(guān)?(同桌交流后個(gè)別回答)
生1:如果大正方形面積是小長(zhǎng)方形的面積的倍數(shù)就行。
師:有道理嗎?
生:有
師:有沒有反例,思考一下
師:提供反例,長(zhǎng)4厘米,寬3厘米的長(zhǎng)方形。電腦演示鋪有一鋪,不能正好鋪滿。
師:再思考,可能與正方形的什么有關(guān)?
生:6能正好除以2和3,8不能正好除以3。
師:那正好鋪滿要滿足幾個(gè)條件。
生:兩個(gè)。
師:板書:6是3的倍數(shù),6是2的倍數(shù)。
規(guī)范表達(dá):6既是3的倍數(shù),也是2的倍數(shù)。
7.運(yùn)用:獨(dú)立思考邊長(zhǎng)是幾的正方形能正好鋪滿?交流(邊長(zhǎng)12厘米、18厘米、30厘米……)
師:這樣的例子舉得完嗎?為什么?
8.揭示概念:
師: 6、12、18、30……不僅是2的倍數(shù),也是3的倍數(shù),我們稱之為公倍數(shù)2、3的公倍數(shù)舉得完嗎?有最小的嗎?
活動(dòng)(二):找公倍數(shù)——掌握確定公倍數(shù)和最小公倍數(shù)的方法
1.獨(dú)立活動(dòng):6、9的公倍數(shù)有哪些?其中最小的公倍數(shù)是幾?
2.交流方法:
生1:先找6的倍數(shù)和9的倍數(shù),再找公倍數(shù)
師:出示答案,全班一起找公倍數(shù)和最小公倍數(shù)
生2:先找9的倍數(shù),再用9的倍數(shù)分別除以6
師:根據(jù)學(xué)生回答出示答案,全班一起找公倍數(shù)和最小公倍數(shù)
生3:先找6的倍數(shù),再用6的倍數(shù)除以9
師:根據(jù)學(xué)生回答出示答案,全班一起找公倍數(shù)和最小公倍數(shù)
3.比較方法:
師:三種方法有什么共同的地方?
生1:都要一一列舉
生2:答案都一樣
師:2、3兩種方法有什么區(qū)別?
生3:第2種方法更簡(jiǎn)潔。
活動(dòng)(三):集合圈——進(jìn)一步理解公倍數(shù)與最小公倍數(shù)的概念
6的倍數(shù) 9的倍數(shù)
6、12…… 9、18……
6的倍數(shù) 9的倍數(shù)
18
6、9的公倍數(shù)
活動(dòng)(四):畫畫涂涂——體會(huì)收獲
1、談收獲
2、練習(xí)
。1)畫一畫:在2的倍數(shù)上畫圈,在5的倍數(shù)上畫三角。
。2)玩一玩,涂一涂:紅棋每次走3格,黃棋每次走4格,在兩種棋都走到的方格上涂色。
【《公倍數(shù)與最小公倍數(shù)》教學(xué)實(shí)錄】相關(guān)文章:
《最小公倍數(shù)》教學(xué)實(shí)錄07-04
最小公倍數(shù)課堂教學(xué)實(shí)錄07-01
最小公倍數(shù)》的課堂教學(xué)實(shí)錄07-01
最小公倍數(shù)課堂實(shí)錄07-02
公倍數(shù)和最小公倍數(shù)教學(xué)設(shè)計(jì)06-28
《最小公倍數(shù)》教學(xué)設(shè)計(jì)04-01
《最小公倍數(shù)》教學(xué)設(shè)計(jì)05-13
最小公倍數(shù)教學(xué)設(shè)計(jì)05-24