- 抽屜原理優(yōu)秀教學(xué)設(shè)計(jì) 推薦度:
- 相關(guān)推薦
《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀
作為一名教師,常常要寫一份優(yōu)秀的教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動(dòng)的計(jì)劃。那么你有了解過教學(xué)設(shè)計(jì)嗎?下面是小編精心整理的《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀,供大家參考借鑒,希望可以幫助到有需要的朋友。
《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀1
今天我將要為大家講的課題是《抽屜原理》。
首先,我對(duì)本節(jié)教材進(jìn)行一些分析:
一、教材結(jié)構(gòu)與內(nèi)容簡(jiǎn)析
本節(jié)內(nèi)容在全書及章節(jié)的地位:《抽屜原理》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書第十二冊(cè)第五單元第一節(jié)。本節(jié)共三個(gè)例題,例1、例2的教材通過幾個(gè)直觀例子,借助實(shí)際操作向?qū)W生介紹抽屜原理,例3則是在學(xué)生理解抽屜原理這一數(shù)學(xué)方法的基礎(chǔ)上,用這一原理解決簡(jiǎn)單的實(shí)際問題。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生的展示數(shù)學(xué)原理的靈活應(yīng)用,讓學(xué)生感受數(shù)學(xué)的魅力,貫穿初步的數(shù)論及組合知識(shí)。
二、 教學(xué)目標(biāo)
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征 ,制定如下教學(xué)目標(biāo):
1 、基礎(chǔ)知識(shí)目標(biāo):經(jīng)歷“抽屜原理”的.探究過程,初步了解“抽屜原理”。
2 、能力訓(xùn)練目標(biāo):
1)、會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問題。
2)、通過操作發(fā)展學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力,形成比較抽象的數(shù)學(xué)思維。
3 、個(gè)性品質(zhì)目標(biāo):
通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力,產(chǎn)生主動(dòng)學(xué)數(shù)學(xué)的興趣。
三、 教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)。
重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。 通過設(shè)計(jì)教學(xué)環(huán)節(jié)讓學(xué)生動(dòng)手操作,自主探索,小組合作交流的方法找到解決問題的關(guān)鍵,總結(jié)出解決問題的辦法。
難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問題加以“模型化”。 通過不同類型的練習(xí),以及觀看鴿巢原理演示圖,建構(gòu)知識(shí),從本質(zhì)上認(rèn)識(shí)抽屜原理,將抽屜原理模型化,從而突破難點(diǎn)。
下面,為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>
四、 教法
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”,我們?cè)谝詭熒葹橹黧w,又為客體的原則下,展現(xiàn)獲取知識(shí)和方法的思維過程。由于本節(jié)課的教學(xué)內(nèi)容較為抽象,著重采用情境教學(xué)法,直觀演示法與談話法相結(jié)合的方式進(jìn)行教學(xué)。
五、 學(xué)法
教學(xué)最重要的就是讓學(xué)生學(xué)會(huì)學(xué)習(xí)的方法。授之以漁,而非授之以魚!因此在教學(xué)中要特別重視學(xué)法的指導(dǎo)。本節(jié)課學(xué)生主要采用了自主、合作、探究式的學(xué)習(xí)方式。
六、 教學(xué)程序及設(shè)想
1、由魯賓孫航海故事 引入:把三枚金幣放進(jìn)兩個(gè)盒子里,至少有一個(gè)盒子會(huì)放幾枚金幣?把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的讓學(xué)生感興趣的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的求知欲望,使學(xué)生的整個(gè)學(xué)習(xí)過程成為“探索”,繼而緊張地沉思,尋找理由,證明過程。
在實(shí)際情況下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)前學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但易于保持,而且易于遷移到陌生的問題情境中。
本題從最簡(jiǎn)單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動(dòng)所有的學(xué)生積極參與進(jìn)來。
《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀2
桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。
教學(xué)理念:
激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動(dòng)手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對(duì)教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建!,使復(fù)雜問題簡(jiǎn)單化,簡(jiǎn)單問題模型化,充分體現(xiàn)了新課標(biāo)要求。
教學(xué)目標(biāo):
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問題。
2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
教學(xué)重難點(diǎn):
重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問題加以“模型化”。
教學(xué)過程:
一、課前游戲引入。
師:同學(xué)們?cè)谖覀兩险n之前,先做個(gè)小游戲:老師這里準(zhǔn)備了4把椅子,請(qǐng)5個(gè)同學(xué)上來,誰(shuí)愿來?(學(xué)生上來后)
師:聽清要求 ,老師說開始以后,請(qǐng)你們5個(gè)都坐在椅子上,每個(gè)人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對(duì)那5個(gè)人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個(gè)同學(xué)”我說得對(duì)嗎?
生:對(duì)!
師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個(gè)有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個(gè)原理。(抽屜原理)
二、通過操作,探究新知
(一)探究例1
1、研究3枝鉛筆放進(jìn)2個(gè)文具盒。
。1)要把3枝鉛筆放進(jìn)2個(gè)文具盒 ,有幾種放法?請(qǐng)同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。
。2)反饋:兩種放法:(3,0)和(2,1)。
。3)從兩種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)
(4)“總有”什么意思?(一定有)
。5)“至少”有2枝什么意思?(不少于2枝)
小結(jié):在研究3枝鉛筆放進(jìn)2個(gè)文具盒時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個(gè)文具盒放進(jìn)2枝鉛筆)
2、研究4枝鉛筆放進(jìn)3個(gè)文具盒。
。1)要把4枝鉛筆放進(jìn)3個(gè)文具盒里,有幾種放法?請(qǐng)同學(xué)們動(dòng)手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。
(2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
。3)從四種放法,同學(xué)們會(huì)有什么發(fā)現(xiàn)呢?(總有一個(gè)筆盒至少有2枝鉛筆)
。4)你是怎么發(fā)現(xiàn)的?
。5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個(gè)文具盒放進(jìn)2枝鉛筆”。如果要讓每個(gè)文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個(gè)文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個(gè)文具盒,總會(huì)有一個(gè)文具盒至少有2枝筆)(你真是一個(gè)善于思想的孩子。)
。6)這位同學(xué)運(yùn)用了假設(shè)法來說明問題,你是假設(shè)先在每個(gè)文具盒里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個(gè)文具盒,那么這個(gè)文具盒就有2枝鉛筆了)
(7)誰(shuí)能用算式來表示這位同學(xué)的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?
。8)在探究4枝鉛筆放進(jìn)3個(gè)文具盒的問題,同學(xué)們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來說明理由,你覺得哪種方法更明了更簡(jiǎn)單?
3、類推:把5枝鉛筆放進(jìn)4個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
把6枝鉛筆放進(jìn)5個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
把7枝鉛筆放進(jìn)6個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
把100枝鉛筆放進(jìn)99個(gè)文具盒,是不是總有一個(gè)筆盒至少有2枝鉛筆?為什么?
4、從剛才我們的探究活動(dòng)中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個(gè)文具盒里至少放進(jìn)2枝鉛筆。)
5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個(gè)筆盒至少有2枝鉛筆。”
6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時(shí),總有一個(gè)文具盒至少放進(jìn)2枝鉛筆。
這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個(gè)抽屜里放進(jìn)了2個(gè)物體!
7、在我們的生活中,常常會(huì)遇到抽屜原理,你能不能舉個(gè)例子?在課前我們玩的游戲中,有沒有抽屜原理?
過渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們?cè)賮硌芯窟@樣一組問題。
(二)探究例2
1、研究把5本書放進(jìn)2個(gè)抽屜。
(1)把5本書放進(jìn)2個(gè)抽屜會(huì)有幾種情況?(5,0)、(4,1)和(3,2)
。2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個(gè)抽屜至少放進(jìn)了3本書)
。3)還可以怎樣理解這個(gè)結(jié)論?先在每個(gè)抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個(gè)抽屜,這個(gè)抽屜就有3本書了。
。4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?
2、類推:如果把7本書放進(jìn)2個(gè)抽屜中,至少有一個(gè)抽屜放進(jìn)4本書。
如果把9本書放進(jìn)2個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)5本書。
如果把11本書放進(jìn)3個(gè)抽屜中。至少有一個(gè)抽屜放進(jìn)4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?
3、小結(jié):從以上的'學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時(shí),我們可以運(yùn)用假設(shè)法,把物體盡可量多地“平均分”給各個(gè)抽屜,總有一個(gè)抽屜比平均分得的物體數(shù)多1。)
4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個(gè)很不簡(jiǎn)單的思維過程,個(gè)個(gè)都是了不起的數(shù)學(xué)家。 “抽屜原理”最先是由19世紀(jì)的德國(guó)數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用。“抽屜原理”的應(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
5、做一做:
7只鴿子飛回5個(gè)鴿舍,至少有2只鴿子要飛進(jìn)同一個(gè)佶舍里。為什么?
8只鴿子飛回3個(gè)鴿舍,至少有3只鴿子要飛時(shí)同一個(gè)鴿舍里。為什么?
。ㄏ茸寣W(xué)生獨(dú)立思考,在小組里討論,再全班反饋)
三、遷移與拓展
下面我們一起來放松一下,做個(gè)小游戲。
我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請(qǐng)五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請(qǐng)大家猜測(cè)一下,同種花色的至少有幾張?為什么?
四、總結(jié)全課
這節(jié)課,你有什么收獲?
《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀3
我說課的內(nèi)容是人教版六年級(jí)數(shù)學(xué)下冊(cè)數(shù)學(xué)廣角《抽屜原理》第一課時(shí),教材70-71頁(yè)的例1和例2.
根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和教材內(nèi)容,我確定本節(jié)課學(xué)習(xí)目標(biāo)如下:
知識(shí)與技能:經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問題。通過猜測(cè)、驗(yàn)證、觀察、分析等數(shù)學(xué)活動(dòng),建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建模”思想。
過程與方法:經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
情感與態(tài)度:通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學(xué)難點(diǎn):理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問題加以“模型化”。
1、用具體的操作,將抽象變?yōu)橹庇^。
“總有一個(gè)文具盒中至少放進(jìn)2支鉛筆”這句話對(duì)于學(xué)生而言,抽象難以理解。怎樣讓學(xué)生理解這句話呢?我覺得要讓學(xué)生充分的操作,一在具體操作中理解“總有”和“至少”,二在操作中理解“平均分”是保證“至少”的最好方法。通過操作,最直觀地呈現(xiàn)“總有一個(gè)文具盒中至少放進(jìn)2支鉛筆”這種現(xiàn)象,讓學(xué)生理解這句話。
2、充分發(fā)揮學(xué)生主動(dòng)性,讓學(xué)生在證明結(jié)論的過程中探究方法,總結(jié)規(guī)律。
學(xué)生是學(xué)習(xí)的主動(dòng)者,特別是這種原理的初步認(rèn)識(shí),不應(yīng)該是教師牽著學(xué)生手去認(rèn)識(shí),而是創(chuàng)造條件,讓學(xué)生自己去探索,發(fā)現(xiàn)。所以我認(rèn)為應(yīng)該提出問題,讓學(xué)生在具體的操作中來證明他們的結(jié)論是否正確,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,逐步提高學(xué)生的邏輯思維能力。
3、適當(dāng)把握教學(xué)要求。
我們的教學(xué)不同于社會(huì)上的輔導(dǎo)培優(yōu)機(jī)構(gòu),因此在教學(xué)中不需要求學(xué)生說理的嚴(yán)密性,也不需要學(xué)生確定過于抽象的“抽屜”和“物體”。
以學(xué)生為課堂的主體,采用創(chuàng)設(shè)情境,提出問題,讓學(xué)生大膽猜測(cè)、動(dòng)手操作、自主探究、合作交流。
今天在學(xué)習(xí)新課之前,老師和大家玩一個(gè)“搶凳子”游戲。(下面有2把椅子。3個(gè)同學(xué)玩搶凳子的游戲,要求每個(gè)人都要坐到凳子上,結(jié)果會(huì)怎樣?)
【設(shè)計(jì)意圖:在課前進(jìn)行的游戲激趣,一使教師和學(xué)生進(jìn)行自然的溝通交流;二激發(fā)學(xué)生的興趣,引起探究的愿望;三為今天的探究埋下伏筆!
1、提出問題:把4支筆放進(jìn)3個(gè)文具盒中,可以怎么放?
2、驗(yàn)證結(jié)論:不管學(xué)生猜測(cè)的結(jié)論是什么,都要求學(xué)生借助實(shí)物進(jìn)行操作,來驗(yàn)證結(jié)論。學(xué)生以小組為單位進(jìn)行操作和交流時(shí),教師深入了解學(xué)生操作情況,找出列舉所有情況的學(xué)生。
。1)先請(qǐng)列舉所有情況的學(xué)生進(jìn)行匯報(bào),一、說明列舉的不同情況,二、結(jié)合操作說明自己的結(jié)論。(教師根據(jù)學(xué)生的回答板書所有的情況)
學(xué)生匯報(bào)完后,教師再利用枚舉法的示意圖,指出每種情況中都有幾支筆被放進(jìn)了同一個(gè)文具盒。
【設(shè)計(jì)意圖:抽屜原理對(duì)于學(xué)生來說,比較抽象,特別是“總有一個(gè)文具盒中至少放進(jìn)2支鉛筆”這句話的'理解。所以通過具體的操作,列舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的文具盒,理解“總有一個(gè)文具盒”以及“至少2支”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,訓(xùn)練學(xué)生的邏輯思維能力!
(2)提出問題:不用一一列舉,想一想還有其它的方法來證明這個(gè)結(jié)論嗎?
學(xué)生匯報(bào)了自己的方法后,教師圍繞假設(shè)法,組織學(xué)生展開討論:為什么每個(gè)文具盒里都要放1支鉛筆呢?請(qǐng)相互之間討論一下。
在討論的基礎(chǔ)上,教師小結(jié):假如每個(gè)文具盒放入一支鉛筆,剩下的一支還要放進(jìn)一個(gè)文具盒,無論放在哪個(gè)文具盒里,一定能找到一個(gè)文具里至少有2支鉛筆。只有平均分才能將鉛筆盡可能的分散,保證“至少”的情況。
【設(shè)計(jì)意圖:鼓勵(lì)學(xué)生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學(xué)生意識(shí)到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想。】
。3)初步觀察規(guī)律。
教師繼續(xù)提問:6支鉛筆放進(jìn)5個(gè)文具盒里呢?你還用一一列舉所有的擺法嗎?7支鉛筆放進(jìn)6個(gè)文具盒里呢?100支鉛筆放進(jìn)99個(gè)文具盒呢?你發(fā)現(xiàn)了什么?
【設(shè)計(jì)意圖:讓學(xué)生在這個(gè)連續(xù)的過程中初步感知方法的優(yōu)劣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維!
3、運(yùn)用抽屜原理解決問題。
出示第70頁(yè)做一做,讓學(xué)生運(yùn)用簡(jiǎn)單的抽屜原理解決問題。在說理的過程中重點(diǎn)關(guān)注“余下的2只鴿子”如何分配?
【設(shè)計(jì)意圖:從余數(shù)1到余數(shù)2,讓學(xué)生再次體會(huì)要保證“至少”必須盡量平均分,余下的數(shù)也要進(jìn)行二次平均分!
4、發(fā)現(xiàn)規(guī)律,初步建模。
我們將鉛筆、鴿子看做物體,文具盒、鴿舍看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學(xué)生用自己的語(yǔ)言描述,只要大概意思正確即可)
小結(jié):只要物體數(shù)量比抽屜的數(shù)量多,總有一個(gè)抽屜至少放進(jìn)2個(gè)物體。這就叫做抽屜原理。
【設(shè)計(jì)意圖:通過對(duì)不同具體情況的判斷,初步建立“物體”“抽屜”的模型,發(fā)現(xiàn)簡(jiǎn)單的抽屜原理。研究的問題來源于生活,還要還原到生活中去,所以請(qǐng)學(xué)生對(duì)課前的游戲的解釋,也是一個(gè)建模的過程,讓學(xué)生體會(huì)“抽屜”不一定是看得見,摸得著。】
5、用有余數(shù)的除法算式表示假設(shè)法的思維過程。
。1)教學(xué)例2,可以出示問題后,讓學(xué)生說理,然后問:這個(gè)思考過程可以用算式表示出來嗎?
。2)做一做:8只鴿子飛回3個(gè)鴿舍,至少有3支鴿子飛進(jìn)同一個(gè)鴿舍。為什么?
【設(shè)計(jì)意圖:在例1和做一做的基礎(chǔ)上,相信學(xué)生會(huì)用平均分的方法解決“至少”的問題,將證明過程用有余數(shù)的除法算式表示,為下一步,學(xué)生發(fā)現(xiàn)結(jié)論與商和余數(shù)的關(guān)系做好鋪墊!
6、再次發(fā)現(xiàn)規(guī)律。
觀察板書,你有什么發(fā)現(xiàn)嗎?讓學(xué)生通過對(duì)除法算式的觀察,得出“只要物體個(gè)數(shù)比抽屜個(gè)數(shù)幾倍還多,總有一個(gè)抽屜至少有商+1個(gè)這樣的物體!钡慕Y(jié)論。
【設(shè)計(jì)意圖:對(duì)規(guī)律的認(rèn)識(shí)是循序漸進(jìn)的。在初次發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,從“至少2個(gè)”德到“至少商+1個(gè)的結(jié)論!
7、介紹課外知識(shí)。
介紹抽屜原理的發(fā)現(xiàn)者——數(shù)學(xué)家狄里克雷。
【設(shè)計(jì)意圖:讓學(xué)生體會(huì)平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對(duì)數(shù)學(xué)的熱情。】
《導(dǎo)學(xué)練案》自我測(cè)評(píng)第一題
對(duì)于本節(jié)課的學(xué)習(xí),你的感受如何?
只要物體數(shù)量比抽屜的數(shù)量多,總有一個(gè)抽屜至少放進(jìn)2個(gè)物體。
這就叫做抽屜原理。
只要物體個(gè)數(shù)比抽屜個(gè)數(shù)幾倍還多,總(至少數(shù)=商+1)
有一個(gè)抽屜至少有商+1個(gè)這樣的物體。文章
《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀4
教材分析
《抽屜原理的認(rèn)識(shí)》是人教版數(shù)學(xué)六年級(jí)下冊(cè)第五章內(nèi)容。在數(shù)學(xué)問題中有一類與“存在性”有關(guān)的問題。在這類問題中,只需要確定某個(gè)物體(或某個(gè)人)的存在就可以了,并不需要指出是哪個(gè)物體(或哪個(gè)人),也不需要說明是通過什么方式把這個(gè)存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“抽屜原理”!俺閷显怼弊钕仁怯19世紀(jì)的德國(guó)數(shù)學(xué)家狄里克雷(Dirichlet)運(yùn)用于解決數(shù)學(xué)問題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。、
學(xué)情分析
本節(jié)課我根據(jù)“教師是組織者、引導(dǎo)者和合作者”這一理念,以學(xué)生參與活動(dòng)為主線,創(chuàng)建新型的教學(xué)結(jié)構(gòu)。通過幾個(gè)直觀的例子,用假設(shè)法向?qū)W生介紹“抽屜原理”,學(xué)生難以理解,感覺抽象。在教學(xué)時(shí),我結(jié)合本班實(shí)際,用學(xué)生熟悉的吸管和杯子貫穿整個(gè)課堂,讓學(xué)生通過動(dòng)手操作,在活動(dòng)中真正去認(rèn)識(shí)、理解“抽屜原理”學(xué)生學(xué)得輕松也容易接受。
教學(xué)目標(biāo)
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會(huì)用“抽屜原理”解決簡(jiǎn)單的實(shí)際問題。
2、通過操作發(fā)展 的類推能力,形成抽象的數(shù)學(xué)思維。
3、通過“抽屜原理”的靈活應(yīng)用,感受數(shù)學(xué)的魅力。
教學(xué)重點(diǎn)和難點(diǎn)
【教學(xué)重點(diǎn)】
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
【教學(xué)難點(diǎn)】
理解“抽屜原理”,并對(duì)一些簡(jiǎn)單實(shí)際問題加以“模型化”。
教學(xué)內(nèi)容:
六年級(jí)數(shù)學(xué)下冊(cè)70頁(yè)、71頁(yè)例1、例2。
教學(xué)目標(biāo):
1、理解“抽屜原理”的一般形式。
2、經(jīng)歷“抽屜原理”的探究過程,體會(huì)比較、推理的學(xué)習(xí)方法,會(huì)用“抽屜原理”解決簡(jiǎn)單的的實(shí)際問題。
4、感受數(shù)學(xué)的魅力,提高學(xué)習(xí)興趣,培養(yǎng)學(xué)生的探究精神。
教學(xué)重點(diǎn):
經(jīng)歷“抽屜原理”探究過程,初步了解“抽屜原理”。
教學(xué)難點(diǎn):
理解“抽屜原理”的一般規(guī)律。
教學(xué)準(zhǔn)備:
相應(yīng)數(shù)量的杯子、鉛筆、課件。
教學(xué)過程:
一、情景引入
讓五位學(xué)生同時(shí)坐在四把椅子上,引出結(jié)論:不管怎么坐,總有一把椅子上至少坐了兩名學(xué)生。
師:同學(xué)們,你們想知道這是為什么嗎?今天,我們一起研究一個(gè)新的有趣的數(shù)學(xué)問題。
二、探究新知
1、探究3根鉛筆放到2個(gè)杯子里的問題。
師:現(xiàn)在用3根鉛筆放在2個(gè)杯子里,怎么放?有幾種放法?大家擺擺看,有什么發(fā)現(xiàn)?
擺完后學(xué)生匯報(bào),教師作相應(yīng)的'板書(3,0)(2,1),引導(dǎo)學(xué)生觀察理解說出:不管怎么放總有一個(gè)杯子至少有2根鉛筆。
。1)師:依此推下去,把4根鉛筆放在3個(gè)杯子又怎么放呢?會(huì)有這種結(jié)論嗎?讓學(xué)生動(dòng)手操作,做好記錄,認(rèn)真觀察,看看有什么發(fā)現(xiàn)?
(2)、學(xué)生匯報(bào)放結(jié)果,結(jié)合學(xué)具操作解釋。教師作相應(yīng)記錄。
(4,0,0) (3,1,0) (2,2,0) (2,1,1)
。▽W(xué)生通過操作觀察、比較不難發(fā)現(xiàn)有與上個(gè)問題同樣結(jié)論。)
。3)學(xué)生回答后讓學(xué)生閱讀例1中對(duì)話框:不管怎么放,總有一個(gè)杯子里至少放進(jìn)2根鉛筆。
師:“總有”是什么意思?“至少”呢?讓學(xué)生理解它們的含義。
師:怎樣放才能總有一個(gè)杯子里鉛筆數(shù)最少?引導(dǎo)學(xué)生理解需要“平均放”。
教師出示課件演示讓學(xué)生進(jìn)一步理解“平均放”。
3、探究n+1根鉛筆放進(jìn)n個(gè)杯子問題
師:那我們?cè)偻孪耄?根鉛筆放在5個(gè)杯子里,你感覺會(huì)有什么結(jié)論?
讓學(xué)生思考發(fā)現(xiàn)不管怎么放,總有一個(gè)杯子里至少有2根鉛筆。
師:7根鉛筆放進(jìn)6個(gè)杯子,你們又有什么發(fā)現(xiàn)?
學(xué)生回答完之后,師提出:是不是只要鉛筆數(shù)比杯子數(shù)多1,總有一個(gè)杯子里至少放進(jìn)2根鉛筆?讓學(xué)生進(jìn)行小組合作討論匯報(bào)。
學(xué)生匯報(bào)后引導(dǎo)學(xué)生用實(shí)驗(yàn)驗(yàn)證想法。
師:把10根小棒放在9個(gè)杯子里呢,總有一個(gè)杯子里至少有幾根小棒?(2根)
師:把100根小棒放在99個(gè)杯子里,會(huì)有什么結(jié)論呢?(2根)
4、總結(jié)規(guī)律
師:剛才我們研究的都是鉛筆數(shù)比杯子數(shù)多1,而余數(shù)也正巧是1的,如果余下鉛筆數(shù)比杯子多2、多3、多4的呢,結(jié)論又會(huì)怎樣?
。1)探究把5根鉛筆放在3個(gè)杯子里,不管怎么放,總有一個(gè)杯子里至少有幾根鉛筆?為什么?
a、先同桌擺一擺,再說一說。
b、你怎么分的?
學(xué)生匯報(bào)后,教師演示:將5根筆平均分到3個(gè)杯子里里,余下的兩根怎么辦?是把余下的兩根無論放到哪個(gè)杯子里都行嗎?怎樣保證至少?
引導(dǎo)學(xué)生知道再把兩根鉛筆平均分,分別放入兩個(gè)杯子里。
。2)探究把15根鉛筆放在4個(gè)杯子里的結(jié)論。
。3)、引導(dǎo)學(xué)生總結(jié)得出結(jié)論:商加1是總有一個(gè)杯子至少個(gè)數(shù)。
【《抽屜原理》教學(xué)設(shè)計(jì)優(yōu)秀】相關(guān)文章:
抽屜原理優(yōu)秀教學(xué)設(shè)計(jì)03-05
抽屜原理教學(xué)設(shè)計(jì)15篇03-12
抽屜原理教學(xué)設(shè)計(jì)(15篇)03-12
《抽屜原理》教學(xué)設(shè)計(jì)(15篇)02-22
《抽屜原理》教學(xué)設(shè)計(jì)15篇02-22